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Abstract

The transverse fracture of model unidirectional composite specimen, comprising up to 220 fibres

with random strengths, is studied using Monte Carlo simulations. The load-sharing from broken

to intact fibres is assumed to obey power-law scaling ∼ r−γ with distance r from the fibre break.

Fibre breaks are assumed to interact in order to remain traction free. The pattern of fibre breaks

that propagate catastrophically is interpreted through cluster analysis. The empirical strength

distributions obtained from the simulations are interpreted using two probabilistic models of brittle

fracture available in the literature. These point to a transition from the brittle to the tough fracture

mode as γ ↓ 2. The transitional γ is approximately equal to that reported in the literature for

non-interacting fibre breaks.

PACS numbers: 72.80.Tm, 02.50.Ey, 02.70.ac, 05.10.Ln

I. INTRODUCTION

Unidirectional fibre composites loaded in uniaxial tension along the fibre direction are

model heterogeneous materials. In general, the fracture of these materials, entails the for-

mation of fibre breaks, matrix cracks, and interfacial debonds in three dimensions [1, 2].

However, in polymer matrix unidirectional composites with a well-bonded fibre-matrix in-

terface, it is reasonable to treat the fracture process as being localised in a plane transverse

to the fibre direction by (i) regarding the composite as a chain of independent longitudi-

nal segments [3, 4], the failure of one of which amounts to composite failure, and (ii) by

conservatively assuming that fibre breaks in each segment occur in a common transverse

plane [5, 6]. The assumption of fracture processes being confined to a transverse plane has

often been used in the literature [6–10] to study the modes of development of fracture, and

to obtain the strength distributions of heterogeneous materials. This assumption is adopted

in the present study also.

It is clear from the foregoing studies that the fracture mode depends on the variability

of fibre strengths. The fibre length relevant to the present two-dimensional setting is one

segment long. Taking this length to be unity, and assuming the normalised fibre strengths
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to be Weibull [11] distributed, the distribution function for the random fibre strength, Σ, is

given by:

F (σ) = Pr{Σ < σ} = 1− exp(−σρ), (1)

where ρ > 0 is termed the Weibull modulus.

Besides the fibre strength variability, fracture development and strength distribution

of two-dimensional unidirectional composite bundles also depends sensitively on the load

redistribution amongst the surviving fibres due to fibre failure [7, 8, 10, 12], i.e., the load

sharing rule. Equal load sharing (ELS), and local load sharing (LLS) are limiting load

sharing rules. In ELS, the load dropped by a broken fibre is distributed equally among all

the surviving fibres. In ELS composites subjected to monotonically increasing tensile load,

the locations of fibre breaks are uncorrelated, and the fracture mode is tough. ELS composite

strength obeys a Gaussian distribution [13]. In LLS, the load dropped by the broken fibres

is distributed entirely amongst their nearest intact neighbours. Under LLS, fibre break

positions are highly correlated, and the composite suffers brittle fracture, regardless of the

scatter in the random tensile strengths of the fibres. That is, fracture proceeds by the

catastrophic growth of a localised cluster of breaks. Composite strength obeys weakest-link

scaling, and a probabilistic model for the weakest-link event is known [9, 14, 15].

It is clear from the above that the fracture mode transitions from tough to brittle when

the load sharing changes from ELS to LLS. The precise location of the transition, for various

interpolation schemes between ELS and LLS, has been studied in the literature. Hidalgo

et al. [7] considered a square patch with periodic boundary conditions. In a patch with

only one broken fibre, they assumed that the stress concentration, K(r), in a surviving fibre

distant r from the broken fibre obeys the power law

K(r) = 1 + c r−γ , (2)

where γ ≥ 0. Parameter c is obtained by demanding that the stress overloads (i.e., stress

concentrations less unity) add up to unity, i.e.,

∑

r>0

(K(r)− 1) = 1, i.e., c =

[

∑

r>0

r−γ

]−1

. (3)

It is clear that c = c(γ,N) depends on the load sharing exponent, and the system size. The

overload profile in Eq. (2) coincides with ELS for γ = 0, and with LLS for γ → ∞. Hidalgo
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et al. [7] and Roy et al. [10] found that brittle fracture is obtained for γ & 2.17, while tough

characteristics are obtained for smaller γ.

In an infinite patch, the summation of Eq. (3) can be approximated as:

c =

[ ∞
∑

r=1

1

rγ
(2πr)

]−1

∼
[ ∞
∑

r=1

1

rγ−1

]−1

. (4)

The latter sum converges for γ > 2, so that c is independent of N , for sufficiently large N .

For γ ≤ 2, however, the sum in the right side of Eq. (4) diverges. This means that in a finite

simulation cell with N fibres, c ↓ 0 with increasing N . The overload profile due to a single

break thus depends not only on the power-law exponent, γ, but also on the simulation cell

size, N , even for large N , if γ ≤ 2.

Another interpolation scheme between the ELS and LLS limits is due to Pradhan et al.

[8]. In their mixed-mode load sharing scheme, a fraction g ∈ [0, 1] of the load dropped by

the broken fibre is distributed equally amongst its nearest neighbours. The remainder, 1−g,

is distributed equally amongst all the surviving fibres. Clearly, the limits g = 0, and g = 1

correspond to the ELS and LLS limits. Pradhan et al. [8] showed that the tough-brittle

transition for their model occurred at g ≈ 0.79.

Roy et al. [10] have also proposed an interpolation scheme between ELS and LLS in

two-dimensions. In their scheme, the load of the broken fibre is distributed to surviving

fibres in a rectangular region including the fibre, up to a specified distance R. This scheme

too approximately interpolates between ELS and LLS as R decreases from ∞ to 1. Roy

et al. [10] found that the phase space spanned by fibre strength variability, and R was

sub-divided into six regions, which they termed brittle nucleating, brittle percolating, quasi-

brittle nucleating, quasi-brittle percolating, high disorder limit, and temporally uncorrelated.

Each phase describes a separate mode of fracture development.

Hidalgo et al. [7] and Roy et al. [10] assumed that the stress overload induced by a set of

broken fibres at an intact fibre is simply the sum of the stress overloads due to the individual

breaks. This assumption produces non-zero tractions at the fibre breaks, when more than

one fibre is broken in the simulation cell. In physical composites, however, breaks interact to

ensure zero traction at the fibre breaks. The opening displacement of each break is altered

by the presence of the other breaks, which is accounted for in the Hedgepeth model [16, 17].

Accounting for the interaction between breaks is also essential to capture the inverse square

root decay of the stress fields with distance from the crack tip, comprised of a large number
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of fibre breaks, in agreement with linear elastic fracture mechanics [5].

In the model of Pradhan et al. [8] too, fibre breaks do not interact. In this scheme,

although zero traction is realised at fibre breaks, the stress state ahead of a large cluster

of breaks does not follow the inverse square root decay with distance from the crack tip.

Also, two fibre breaks that do not have a common neighbouring intact fibre, produce equal

overload on their neighbours, regardless of the distance between the breaks, which is different

from the response of an interacting elastic system [16–19].

On the one hand, the assumption of non-interaction between fibre breaks in the models

of Hidalgo et al. [7], Pradhan et al. [8], and Roy et al. [10] makes the fracture simulations

computationally light, and enables these studies to access large system sizes. On the other

hand, the load sharing rules in these works is not representative of physically important

elastic systems, such as fibre composites. Studies of the fracture modes in elastic systems,

on the other hand, have been limited to small system sizes of the order of a few thousand

fibres, to keep the computational effort tractable [6, 20]. While these studies are able to

identify the brittle fracture mode as such, it is not clear if the tough modes observed represent

size-independent response, or are an artefact of limited system size [6].

In recent work, an algorithm based on the fast Fourier transform has been developed

to simulate fracture of a two dimensional transverse plane [21, 22]. These simulations are

asymptotically faster than the classical simulations, and can access composite bundles com-

prised of millions of fibres, while accounting for elastic interactions between fibre breaks.

Also, although Gupta et al. [21], and Mahesh et al. [22] assumed Hedgepeth load sharing,

the methodology developed therein can be applied to arbitrary load sharing rules, including

Eq. (2). These advantages mitigate the simulation cell size limitations of fracture simula-

tions in elastic composites [6, 19], and open up the possibility of exploring the tough-brittle

transition through fracture simulations.

As in Hidalgo et al. [7], Pradhan et al. [8], and Roy et al. [10], it is attempted in the

present work to identify the γ∗ at which the tough-brittle transition occurs in the transverse

fracture of unidirectional composites. The difference between those works, and the present

one is that the elastic interactions among fibre breaks is accounted for, so that fibre breaks

in the present work are traction free. The stress concentration at the edge of a cluster of

interacting fibre breaks is greater than the simple sum of the stress concentrations induced

by non-interacting fibre breaks [6, 17, 19]. The increased stress concentration may promote
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the brittle fracture mode, and may thereby decrease the value of γ∗.

In Sec. II, the simulation methodology, cluster analysis tools, and probabilistic models are

recollected. Empirical strength distributions obtained from the simulations are presented

in Sec. III, and interpreted using the probabilistic model based on tight cluster growth [9].

The use of probabilistic fracture models to identify the tough-brittle transition is a novel

feature of the present work. Of central importance in this analysis is the size of the critical

cluster of fibre breaks, which triggers catastrophic crack growth. It is shown that the size of

the critical cluster scales as the system size for γ ≈ 2, but scales slower than the system size

for γ > 2. This points to a tough-brittle transition very near γ = 2, even when fibre breaks

interactions are accounted for.

II. FRACTURE MODES

II.1. Computational

II.1.1. Fracture simulations

n

m=0
n=0

ν−1

ν−1

· · ·· · ·

· ·
·

· ·
·

1

1

m

FIG. 1: A rhombus-shaped periodic simulation cell of ν × ν fibers arranged in a hexagonal

lattice showing the m–n coordinate system.

Monte Carlo simulations are performed in rhombus-shaped patches representing a trans-

verse cross-section of the fibre composite. The transverse cross-section is comprised of

N = ν × ν fibres, as shown in Fig. 1. N is termed the system size. The m-n coordi-

nate system to locate fibres in the simulation cell is also shown. Periodic conditions are

imposed so that the row of fibres at the left and right edges (m = 0 and m = ν − 1) are
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neighbours. Similarly, the fibres at the bottom and top edges (n = 0 and n = ν−1) are also

considered neighbours. The periodic boundary conditions ensure that the stress concentra-

tions induced by a single break is translation invariant, i.e., only the separation between the

broken fibre and a surviving fibre is important for determining the stress concentration in

the latter, due to the former, and not the absolute positions of the two fibres. This property

makes the matrix [Λ], whose element Λmnpq represents the stress overload in fibre (p, q) due

to a fibre break at (m,n), circulant in two modes [23]. The circulance of [Λ] enables it to be

diagonalised asymptotically faster in Fourier space than in real space, as detailed in Gupta

et al. [21], and enables an asymptotically faster solution for the opening displacements at

the fibre breaks.

The computational time of the Monte Carlo simulations can also be decreased by a

considerable factor by noticing that in a two-dimensional simulation cell, the stress overload

in a surviving fibre increases monotonically with the number of fibre breaks. This enables

the determination of the ultimate tensile strength of the simulation cell to any desired

accuracy using successive bisection. If the ultimate tensile strength of the composite can be

bracketed tightly, this proves to be much faster than the commonly followed approach [6, 24]

of gradually increasing the applied load up to the point of catastrophic crack growth, as

detailed in Mahesh et al. [22].

For each Weibull exponent ρ, and system size, N , Nsim statistically identical composite

specimen are generated by assigning fibre strengths drawn from Eq. (1). Let σ̄(i) denote

the strength of the i-th weakest specimen, for i ∈ {1, 2, . . . , Nsim}. The empirical strength

distribution, GN(σ(i); γ, ρ) is then defined as

GN(σ(i); γ, ρ) =
i− 1/2

Nsim

, (5)

for i ∈ {1, 2, . . . , Nsim}.

II.1.2. Cluster analysis

The fracture mode – tough, or brittle – can sometimes be identified visually by examining

snapshots of fracture development [6]. Clustering together of breaks into a critical cluster,

and their propagation suggests brittle fracture. However, seemingly disperse fibre breakage

can also cause brittle fracture [22]. Visual identification of the fracture mode may thus be
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erroneous.

Kun et al. [25], Hidalgo et al. [7], Pradhan et al. [8], Roy et al. [10], and others have

used a quantitative method to identify the fracture mode, based on cluster analysis. In

this method, the frequency f(s) of clusters of fibre breaks of size s is obtained just before

catastrophic crack growth begins. The moments of f(s), defined as:

Mk =
∑

s

skf(s), (6)

are calculated for k ∈ {0, 1, 2, . . .}. M0 and M1 represent the number of clusters, and the

number of broken fibres, respectively. Hidalgo et al. [7] have identified the γ at whichM2/M1

achieves a maximum with the brittle-ductile mode transition.

In the present setting, cluster analysis has been implemented using the classical Hoshen

and Kopelman [26], and union-find [27, Sec. 22.3] algorithms. As noted in Sec. II.1.1, com-

posite strength is determined presently by a bracketing procedure. The lower end point of

the bracket signifies a load level at which the model composite survives. Cluster frequencies,

f(s), are calculated or recalculated at the lower end point whenever it is set, or updated.

The f(s) when the simulation terminates characterise the computational critical cluster,

which propagates to rupture the remaining fibres. The moments, Mk are calculated from

f(s), and the values of Mk are averaged across the Monte Carlo simulations.

II.2. Probabilistic models

The empirical strength distributions obtained from the Monte Carlo simulations will be

interpreted using the probabilistic models of composite fracture, recalled below.

II.2.1. Tough mode

The prototypical example of a unidirectional tough composite is the loose bundle of

threads studied by Daniels [13]. The load dropped by a broken fibre is redistributed equally

amongst all the surviving fibres in a loose bundle of threads, following ELS. Qualitatively,

in a tough composite, fracture occurs by the linking up of multiple clusters of fibre breaks

spatially distributed over the entire cross-section. The number of fibre breaks in these

clusters is comparable to the total number of fibres in the composite.
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Consider a loose bundle of M threads, whose strengths are Weibull [11] distributed,

following Eq. (1). Then, the classical result of Daniels [13] states that as M → ∞, the

bundle strength per fibre, EM(σ), is Gaussian distributed:

EM(σ) = Φ

(

σ − µM

σM

)

=
1

√

2πσ2
M

exp

(

−(σ − µM)2

2σ2
M

)

, (7)

with mean bundle strength [24],

µM = (1/ρ)(1/ρ) exp(−1/ρ), (8)

and standard deviation,

σM =
√

exp(−1/ρ)(1− exp(−1/ρ))/n. (9)

Eq. (7) is a good approximation of the bundle strength for large M . For smaller M ,

McCartney and Smith [28] have proposed a recursive formula for the strength of the M -

bundle.

EM(σ) = {F (σ′
M−1)}M −

M−1
∑

k=0

(

M

k

)

Π(k){F (σ′
M−1)− F (σ′

k)}M−k. (10)

In Eq. (10), F (·) is given by Eq. (1),

Π(k) = {F (σ′
k−1)}m −

k−1
∑

l=0

(

k

l

)

Π(l){F (σ′
k−1)− F (σ′

l)}k−l,

(

k
l

)

= k!/(k!(k − l)!), σ′
k = Mσ/(M − k), and Π(0) = 1. This formula becomes too com-

putationally intensive, and prone to floating point truncation errors to use beyond about

M = 100. Presently, therefore, the strength distribution is taken to follow Eq. (7) for

M > 100, and to follow Eq. (10) for 1 ≤ M ≤ 100.

The ELS bundle has been investigated extensively in the literature. Much is known

about the fracture characteristics of ELS bundles, including the scaling of avalanche sizes,

and energy released. These results may be found in Hansen et al. [29, Chap. 2, and 3].

II.2.2. Brittle mode

The fracture of the composite bundle exhibits a brittle character when a localised cluster

of fibre breaks forms, and propagates catastrophically. The number of fibre breaks in the

localised cluster is much smaller than that in the composite. Let GN(σ; γ, ρ) denote the
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empirical strength distribution, obtained from the Monte Carlo simulations, and defined in

Eq. (5). Following Harlow and Phoenix [14], an unequivocal signature of the brittle mode

is that the weakest-link empirical strength distribution,

WN(σ; γ, ρ) = 1− (1−GN(σ; γ, ρ))
1/N , (11)

is independent of the number of fibres, N . Pictorially, the existence of a weakest-link failure

event is confirmed by the collapse of plots of WN(σ; γ, ρ) for different system sizes N into a

common master curve. If WN were independent of N , it is reasonable to write W (σ; γ, ρ),

which now denotes the system-size independent strength distribution of the weakest-link

failure event.

Two models available in the literature for predicting WN(σ; γ, ρ), viz., the Curtin [20]

model, and the tight cluster growth model [9, 22, 30], are now summarised.

Curtin [20] proposed that composite failure occurs when at least one ofN/Nc, 1 ≤ Nc ≤ N

events occurs, the event being the failure of an Nc-bundle of fibres obeying ELS. Accordingly,

the composite strength distribution, GN(σ; γ, ρ), is related to the strength distribution of

the weakest-link event given by Eq. (7) through:

GN(σ; γ, ρ) = 1−
(

1− ENc
(σ;µ′

Nc
)
)N/Nc

. (12)

Here, ENc
(σ;µ′

Nc
) denotes the strength distribution of an Nc fibre ELS bundle, withM = Nc,

and standard deviation given by Eq. (9). The mean, µ′
Nc
, of ENc

(σ;µ′
Nc
) generally differs

from that given by Eq. (8). The shifted mean, µ′
Nc
, and the size of the weakest-link, Nc are

the two parameters of the Curtin [20] model.

It follows from Eqs. (11), and (12) that

WN(σ; γ, ρ) = 1− (1− ENc
(σ))1/Nc . (13)

The Curtin [20] model regards the Nc-cluster of fibre breaks as the nucleus of brittle fracture;

fibres ahead of this cluster are assumed to break almost surely, i.e., with probability 1.

The following procedure is used to fit the parameters of the Curtin [20] model. For

each N ′
c ∈ {1, 2, . . . , N}, the empirical distribution, 1 − (1 − GN(σ(i); γ, ρ))

N ′

c/N , is plotted

on Gaussian probability coordinates. The empirical distribution is assumed Gaussian dis-

tributed, and a minimum least-squares straight line is fit to it. The reciprocal of the slope

of this straight line gives the standard deviation of the empirical distribution. The empirical
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standard deviation so obtained is compared with the standard deviation of the Daniels dis-

tribution, Eq. (9), with M = N ′
c. The N

′
c for which the relative error between the empirical

and Daniels standard deviations is the least is considered the best fit. The corresponding

N ′
c is taken to be Nc. With Nc fit, µ

′
Nc

is fixed by determining the translation to be applied

to the mean of the model predicted strength distribution so that it matches the mean of the

empirical strength distribution.

➊ ➋

➌➍

➎

➏➐

➑

➒

➓

FIG. 2: Schematic representation of the failure event hypothesised to be the weakest-link

event by the tight cluster growth model. The composite cross-section is viewed as a

patch-work of bundles. In this figure, each bundle is comprised of 19 fibres, obeying

equal-load sharing. The failure of a bundle, labelled ➊, causes an overload in its six

neighbours. Under this overload, one of them, say ➋ fails. The overloads due to a pair of

failed bundles leads to the failure of, say ➌, and so on.

The second model of interest is called the tight cluster growth model [9, 22, 30]. The

development of the weakest-link event, according to this model, is depicted schematically

in Fig. 2. Here, neighbouring ELS bundles, each comprised of M fibres, hereafter termed

M -bundles, fail sequentially. The sequence begins with the failure of one M -bundle, labelled

➊ in the schematic Fig. 2. The failure of this M -bundle overloads its six neighbouring ELS

bundles. The second step involves the failure of one of these overloaded ELS M -bundles,

say ➋, due to the overload. The third step involves the failure of one of the overloaded

neighbours of the pair of M -bundles ➊, and ➋, and so on. Growth of the cluster of bundles

in this manner has been termed ‘tight cluster growth’ [6].
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Let N
(M,N)
j denote the number of overloaded neighbouringM -bundles surrounding a tight

cluster of j M -bundles, in a composite comprised of N fibres. Let N
(M)
0 ≡ 1. Let K

(M,N)
j

denote the stress concentration imposed by this tight cluster on its neighbours. Let K0 ≡ 1.

Then, assuming the successive steps of tight cluster growth are approximately independent,

the probability of tight cluster growth, W (M,N)(σ; γ, ρ), can be written as:

W (M,N)(σ; γ, ρ) =

⌊N/M⌋−1
∏

j=0

{

1−
[

1− E(M)
(

K
(M,N)
j σ

)]N
(M,N)
j

}

. (14)

W (M,N)(σ; γ, ρ) depends on γ through the stress concentrations K
(M,N)
j , and on ρ through

E(M)(·). The upper limit on the index j, ⌊N/M⌋ − 1 indicates the number of M bundles

that can fit into the simulation cell of size N . The tight cluster growth model thus directly

accounts for the finiteness of the system.

Although K
(M,N)
j , and N

(M,N)
j can be evaluated directly following Gupta et al. [21], an

approximation is presently used to speed up the evaluation of Eq. (14). Consider a tight

cluster of j fibre breaks in a simulation cell comprised of N/M fibres. The problems of j

M -bundles, and j single breaks, differ only in terms of size scale. Also, K
(M)
j and N

(M)
j are

non-dimensional quantities. Therefore, it is presently assumed that

K
(M,N)
j = K

(1,N/M)
j , and N

(M)
j = N

(1,N/M)
j . (15)

Now, N/M in Eq. (15) need not, in general, be a square number, and may therefore not fit

in a rhombus-shaped patch, Fig. 1. Also, it is computationally advantageous if the system

size were an even power of two [21]. The approximation

K
(M,N)
j ≈ K

(1,N1)
j , and N

(M,N)
j ≈ N

(1,N1)
j , (16)

with N1 = 22[log2
√

N/M ], addresses these issues. Here, [·] denotes rounding off to the nearest

natural number.

K
(1,N1)
j can be directly evaluated following Gupta et al. [21]. To evaluate N

(1,N1)
j , the

tight cluster of j-breaks is associated with radius R, given by

j = πR2. (17)

The intact neighbours of a tight cluster of radius R are taken to be those fibres that are

broken in a tight cluster of radius R + 1, but not in one of radius R. The number of
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FIG. 3: The number of intact neighbours of penny-shaped clusters of fibre breaks obeys

Eq. (18). The system size, N1 = 220, is much larger than the size of the largest cluster

considered.

neighbours can be determined by a simple geometric calculation, and is plotted in Fig. 3. It

is seen that

N
(1)
j =

2√
3
× 2πR = 4

√

πj

3
, (18)

captures the empirical scaling very well, provided j ≪ N1. However, if j ≈ N1, the number

of neighbours will be limited by the system size, and is better approximated as N
(1)
j = N1−j.

Both possibilities are approximately accounted for by taking

N
(1,N1)
j = min

(

4
√

πj/3, N1 − j
)

. (19)

This concludes the discussion of the parameters appearing in Eq. (14).

Let the composite cross-section be a priori partitioned into N/M M -bundles. Assuming

the weakest-link event may initiate from any of these bundles with equal likelihood implies
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that

GN(σ; γ, ρ) = 1− (1−W (M,N)(σ; γ, ρ))N/M . (20)

Comparing Eq. (11), and (14) shows that

WN(σ; γ, ρ) = 1− (1−W (M,N)(σ; γ, ρ))1/M . (21)

The case M = N represents a degenerate condition, wherein a single M -bundle occupies the

entire composite cross-section. In this case, Eqs. (14), and (20) reduce to GN(σ) = EM(σ),

where EM(σ) is given either by Eq. (7), or by (10). The tight cluster growth model reduces

to the Curtin [20] model if only the first factor were retained in the product of Eq. (14). It

reduces to the tight cluster growth model of Mahesh et al. [6] by setting M ≡ 1.

The tight cluster growth model is more complex than the Curtin [20] model. First, it

requires the direct calculation of K
(M,N)
j , as described above. The Curtin [20] model does

not require any stress concentration calculations. Second, the tight cluster growth model

requires the evaluation of a product in Eq. (14). This may be computationally intensive,

particularly if the individual factors must be evaluated using the McCartney and Smith [28]

recursion, Eq. (10).

In return for the added complexity, the tight cluster growth requires only that a single

parameter, M , be fit. M may be regarded as the counterpart of the fitting parameter Nc in

the Curtin [20] model. There is no analog of the Curtin [20] model fitting parameter, µ′
Nc
,

in the tight cluster growth model.

III. RESULTS, AND DISCUSSION

Monte Carlo fracture simulations have been run on Nsim = 256 computer specimen with

system sizes, N ∈ {214, 216, 218, 220}, for each Weibull exponent ρ ∈ {1, 2, 3, 5, 10}, and for

each load-sharing power law exponent γ ∈ {0, 1, 1.5, 2, 2.05, 2.1, 2.2, 2.5, 3}. Of these γ, only

those in the range 2 < γ ≤ 3 represent physical load sharing rules in elastic composites, as

noted in Eq. (4). Therefore, attention is focused on this range. This range is of interest also

because Hidalgo et al. [7] and Roy et al. [10] observed a transition within it.

Cluster moments Mk, defined in Eq. (6) have been recorded at the point of catastrophic

crack propagation from each of these simulations. Specimen strengths are also recorded,

and the empirical strength distributions, GN(σ(i); γ, ρ), are derived using Eq. (5).
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FIG. 4: Variation of the moment ratio, M2/M1, averaged over all the simulations. Solid

lines correspond to system size, N = 220, and dashed lines to N = 214.

III.1. Cluster statistics

As noted in Sec. II.1.2, Hidalgo et al. [7], Pradhan et al. [8], Kun et al. [25], and Roy

et al. [10], have used cluster analysis to quantitatively identify the parametric value cor-

responding to the tough-brittle transition in systems wherein fibre breaks are assumed to

be non-interacting. Of these studies, Hidalgo et al. [7], and Roy et al. [10, Fig. 7], have

considered power-law load sharing. The former work assumes Weibull-distributed strengths,

with ρ = 2, while the latter assume uniform or power-law distributed fibre strengths. They

locate the transition at γ = 2.17, and γ = 2.15, respectively. The proximity of the transition

point despite quite different fibre strength distributions suggests its robustness.

Fig. 4 shows the variation of the moment ratio, M2/M1 with γ, for all the presently

studied ρ, and for two simulation cell sizes, N = 214, and N = 220. For 2 ≤ ρ ≤ 10, M2/M1

maximises at γ & 2, with the maximum moving from γ = 2 for ρ = 10 to γ = 2.2 for ρ = 2.
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When ρ = 1, M2/M1 increases from γ = 3 to γ = 2.5, and remains nearly constant over

0 ≤ γ ≤ 2.5. That is, the largest γ at which M2/M1 maximises increases with decreasing ρ.

These observations hold for both simulation cell sizes.

Applying the criterion of Hidalgo et al. [7], and Roy et al. [10] to the present results, it

is found that the tough-brittle transition occurs at γ = 2 for ρ = 10, and monotonically

increases to γ = 2.5 for ρ = 1. The γ at which the presently obtained M2/M1 maximise are

comparable to those of Hidalgo et al. [7], and Roy et al. [10]. It is speculated that for still

smaller ρ < 1, the transitional γ will increase further toward γ = 3. However, the present

results do not clearly indicate if the transitional γ will decrease with increasing system size,

N , for fixed ρ. This is because the same transitional γ is presently obtained for both the

largest and smallest system sizes studied, for all ρ. Much larger simulations than those

presently feasible will be required to resolve this question.

III.2. Strength distributions

Fig. 5 shows the empirical strength distributions for γ ∈ {3, 2.5, 2} composites with

ρ ∈ {10, 1}, in Gaussian probability coordinates. These are compared with the best fit lines

obtained from the Curtin [20] model. It is seen that in every case, the Curtin [20] model

fits the empirical distributions very well. Model parameters Nc, and µ′
Nc

are fit following

the procedure given in Sec. II.2.2. However, only the parameter Nc, which is important to

understand the tough-brittle transition, is listed in the legends.

Fig. 5a corresponds to the most localised load sharing, with the least fibre strength

variability, amongst the cases shown in Fig. 5. In this case, the Curtin [20] model fits the

empirical strength distributions of variously sized simulation cells within a relatively narrow

range 64 ≤ Nc ≤ 96. As the load sharing becomes less localised, with decreasing γ, the

strength distributions approach the corresponding ELS distributions. Thus, for γ = 3, good

fits are obtained using Nc ≪ N , for both ρ considered. For γ ≈ 2, good fits are obtained

only with Nc . N .

In Fig. 6, the same empirical distributions as those in Fig. 5 are fit to the tight cluster

growth model, in Weibull probability coordinates. Again, it is seen that in all the cases,

good fits are obtained with the tight cluster growth model. The parameter, M , is fit for

each γ, and ρ; its value is listed in the legends.
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FIG. 5: Empirical strength distributions of γ ∈ {3, 2, 1}, ρ ∈ {10, 1} load sharing bundles

plotted on Gaussian probability coordinates, and fit with the Curtin [20] model. Each plot

shows the empirical strength distribution of N ∈ {214, 216, 218, 220} composites with yellow,

blue, red, and black dots. The model fitting parameter Nc is listed in the legends.
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FIG. 6: Empirical strength distributions of γ ∈ {3, 2.5, 2}, ρ ∈ {10, 1} load sharing bundles

plotted on Weibull probability coordinates, and fit with the tight cluster growth model.

Each plot shows the empirical strength distribution of N ∈ {214, 216, 218, 220} composites,

with yellow, blue, red, and black dots, respectively. The model fitting parameter M is

listed in the legends.
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The weakest-link strength distributions corresponding to differentN collapse onto a single

master curve only in Fig. 6a, for γ = 3, ρ = 10, with M = 25. For all the other cases shown,

the classical collapse of the weakest-link distributions into a common master curve [6, 14] is

not observed.

Both the Curtin [20] and tight cluster growth models are thus able to fit the empirical

strength distributions very well. This is true not only in the probability range of interest,

but also in lower the tail of the distribution (not shown). It is known that the predictions

of the two models agree for Hedgepeth load sharing, which corresponds to γ = 3 [30]. The

present result extends this conclusion to less localised load sharing rules, viz, γ ≤ 3, also.

The parameter M of the tight cluster growth model is always smaller than Nc of the

Curtin [20] model. This is to be expected since M is the size of the initiating cluster leading

up to fracture, while Nc is the size of the propagating cluster. However, M is significantly

smaller than N only in Figs. 5a–c, and 6a–c. In Figs. 5d–f, and 6d–f, M ≈ Nc. In the

latter cases, the weakest-link product of Eq. (14) in the tight cluster growth model also

converges after just one factor, j = 1. These observations suggest that with decreasing γ

and ρ, fracture development in the tight cluster growth model approaches that of the Curtin

[20] model.

III.3. Tough-brittle transition

Nc/N in the Curtin [20] model represents the fraction of fibres from which brittle fracture

develops. Fig. 7 shows the variation of Nc/N with system size, N on log-log scale for ρ = 10,

and ρ = 1. The points denote the values of Nc/N . Lines obtained by least squares fitting are

also shown. Nc/N shows a decreasing trend for 2.1 ≤ γ ≤ 3 in Fig. 7a, which corresponds to

ρ = 10, implying that the size of cluster of fibre breaks from which brittle fracture initiates

scales slower than the system size. This suggests that brittle fracture, i.e., catastrophic crack

growth from a localised Nc-fibre break nucleus will occur for 2.1 ≤ γ ≤ 3, as the system

size, N ↑ ∞. For γ = 2.05, neither a clear decreasing nor a clear increasing trend is seen. It

is therefore, not possible to decide if the β = 2.05, ρ = 10 specimen will fail by the tough or

brittle mode. For γ = 2, however, Nc/N shows an increasing trend with N , implying that

the size of the cluster of fibre breaks from which brittle fracture initiates grows faster than

the system size. This indicates the tough fracture mode, with Nc/N ↑ 1 with increasing
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FIG. 7: The scaling of the fraction of the Curtin [20] model bundle size, Nc/N , with

system size N for various γ for (a) ρ = 10, and (b) ρ = 1 composites.
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N . The Curtin [20] model thus predicts a tough-brittle transition for ρ = 10, for some

γ ∈ [2.0, 2.1].

Similar considerations, applied to Fig. 7b, corresponding to ρ = 1, reveals a tough-brittle

transition at some γ ∈ [2.1, 2.2]. Interestingly, this transitional parameter value range

includes that (γ ≈ 2.17) obtained by Hidalgo et al. [7], and Roy et al. [10], assuming no

interaction between the fibre breaks, for fibre Weibull exponent ρ = 2.

In the tight cluster growth model, M/N denotes the fraction of fibres from which brittle

fracture may develop. The variation of M/N with system size, N on log-log scale for ρ = 10,

and ρ = 1 are shown in Fig. 8. Again, the points denote the calculated values of M/N , and

the lines are obtained by linear least squares fitting the points. For ρ = 10, a decreasing

trend of M/N with N can be seen in Fig. 8a for 2.05 ≤ γ ≤ 3, which indicates the brittle

failure mode. The M/N corresponding to γ = 2, however, shows an increasing trend with

N , which again points to the tough mode. The tough-brittle transition must therefore, occur

over the interval γ ∈ [2, 2.05]. In Fig. 8b, for ρ = 1, the γ = 2.1 and 2.05 lines are nearly

horizontal. The scatter of the data points about their least squares lines is also significant.

Therefore, the fracture mode in these cases is ambiguous. For γ = 2, however, a positive

slope, and therefore, the tough mode is clearly indicated.

TABLE I: Ranges of the power-law load sharing exponent, γ∗, over which the tough-brittle

transition is predicted to occur by the three approaches. ρ denotes the Weibull exponent of

the fibre strengths.

ρ = 10 ρ = 1

Cluster analysis γ∗ ∈ [2.0, 2.1] γ∗ ∈ [2.0, 2.5]

Curtin [20] model γ∗ ∈ [2.0, 2.1] γ∗ ∈ [2.0, 2.2]

Tight cluster growth model γ∗ ∈ [2.00, 2.05] γ∗ ∈ [2.0, 2.2]

Table I summarises the γ∗ range over which the tough-brittle transition is predicted by

cluster analysis, by the Curtin [20] model, and by the tight cluster growth model. Regardless

of the method, the γ∗ range is wider for the smaller Weibull exponent, ρ = 1, than for ρ = 10.

Also, for fixed ρ, the latter two methods, based on analysing the strength distribution,

provide tighter bounds on the transitional γ∗. It seems plausible that the γ∗-ranges can

be further narrowed if fracture simulations could be performed on even larger system sizes,
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FIG. 8: The scaling of the fraction of the tight cluster growth model bundle size, M/N ,

with system size N for various γ for (a) ρ = 10, and (b) ρ = 1 composites.
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FIG. 9: Empirical strength distributions obtained from Monte Carlo simulations with load

sharing exponent γ ∈ {0, 1, 1.5, 2}. The first row corresponds to ρ = 10, and the second

row to ρ = 1. The first and second columns correspond to system sizes N = 214, and 220,

respectively.

N > 220. It is speculated that for large enough N , γ∗ ↓ 2, for all Weibull exponents ρ.

III.4. The load sharing regime 0 ≤ γ ≤ 2

It was noted in connection with Eq. (4) that the regime 0 ≤ γ ≤ 2 cannot be realised in

physical elastic composites, because the load redistribution in this regime also depends on

system size, N . In this regime, the increasing trend of Nc/N ↑ 1 and M/N ↑ 1 with system

size N , observed for γ = 2 in Figs. 7, and 8 can be expected to hold. Thus, for sufficiently

large N , the strength distributions of these composites will be given by Eq. (7), derived for

ELS bundles [13].

The convergence of the 0 < γ ≤ 2 empirical strength distributions toward the γ = 0 ELS
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distribution can be directly demonstrated. Fig. 9 shows these distributions for N ∈ {214, 220}
composites with γ ∈ {0, 1, 1.5, 2}. The first row corresponds to ρ = 10, and the second row

to ρ = 1. The first column corresponds to the small system size N = 214, while the second

corresponds to the larger size N = 220. The variability of the composite strengths in the

second column is clearly much smaller than that in the first column. Empirical distributions

corresponding to all the four γ are seen distinctly in the first column. In the second column,

corresponding to the larger system size, the empirical distributions corresponding to γ = 0,

1, and 1.5 are observed to overlap. The distribution corresponding to γ = 2 is also to seen

to approach that for γ = 0 with increasing N , but not to overlap.

IV. CONCLUSION

The influence of load sharing on the fracture mode of unidirectional composites in a

transverse plane by fibre breakage has been studied through Monte Carlo fracture simulations

over a range of load sharing exponent, γ, and fibre strength variability. Interactions, which

ensure traction-free fibre breaks, are accounted for in the fracture simulations. The pattern

of fibre breaks just before catastrophic crack propagation begins has been interpreted using

cluster analysis. The empirical strength distributions given by the simulations have been

interpreted using two stochastic models of composite failure, viz., the Curtin [20] model,

and the tight cluster growth model [9, 22, 30]. All the approaches point to a tough-brittle

transition near γ = 2. On the one hand, for γ & 2, brittle fracture ensues from a critical

cluster of fibre breaks, which becomes increasingly localised with increasing system size. On

the other hand, for γ . 2, the size of the critical cluster grows faster than the system size,

which will result in the tough fracture mode for sufficiently large systems.
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