Topics covered so far (it will be updated weekly)

- Introduction to fracture mechanics
 - Unexplained failures
 - Length scale effects

- Complex variable method
 - Analytic function
 - Cauchy-Riemann conditions
 - Complex formulation of plane elasticity problems

- Displacement and stress formulations for plane stress and strain cases
- Detailed derivation of KM approach
- Different forms of stress function
- Energy-based analysis
 - Griffith's approach of energy balance
 - Griffith's failure criteria
 - Computation of strain energy for different loadings
 - Strain energy release rate for constant load and displacement cases
 - Fracture strength by Griffith
 - Necessary and sufficient conditions for fracture (critical crack) in brittle and ductile materials
 - Estimation of theoretical cohesive strength
 - Energy release rate in terms of potential energy and compliance of material
 - Graphical representation of fracture for brittle materials (plane stress and plane strain)
 - Resistance curve for ductile materials in plane stress case
 - Pop-in phenomenon for intermediate thickness specimen

- Stress-based analysis
 - Airy stress function for mode-I fracture (Westergaard stress function)
 - Westergaard solution of mode-I fracture stress field (plane stress and plane strain)
 - Consequence of Westergaard solution and Irwin's correction
 - Derivation of displacement field based on mode-I fracture Westergaard stress field (plane stress and plane strain)
 - Relation between strain energy release rate (G) and stress intensity factor (SIF) for mode-I case
 - Generalized derivation of relation between G and SIF for mode-I case
 - Westergaard stress and displacement fields for mode-II and mode-III cases (with crack center and crack tip as origin)
 - Generalized Westergaard approach based on two complex functions
 - Evaluation of SIF for various loadings for mode-I fracture, and mixed mode cases
 - SIF of edge cracks, principle of superposition in the evaluation of SIF
 - SIF of embedded penny shaped cracks (circular and elliptical flaws)
 - SIF of surface flaws (semi-elliptical and one-quarter elliptical shallow cracks)
 - Fracture toughness comparison for edge and surface cracks
• Modelling of inelastic deformation
 ◦ Selection of fracture toughness for different types of cracks
 ◦ Small scale yielding
 ◦ Computation of plastic zone, using von Mises and Tresca criteria, ahead of crack tip for through-the-thickness central crack under far field loading (plane stress and plane strain cases)
 ◦ Computation of plastic zone for mode – I and mode – III cases by Westergaard's stress field with crack tip as origin
 ◦ Computation of effective crack length by Irwin and Dugdale models

• \(J \)-integral
 ◦ Proof of \(J = G \)
 ◦ \(J = 0 \) for a closed path (\(J \) is path independent)
 ◦ Applicability of \(J \) integral
 ◦ Compute \(J \) for Dugdale model

• CTOD
 ◦ Derivation of CTOD for Irwin and Dugdale models
 ◦ Equivalence between \(G \) and \(J \)
 ◦ \(J_{SSY} \) for Dugdale model
 ◦ COD design curves

• Cohesive zone modelling