
 

BISTABILITY AND NOISE INDUCED TRANSITION 

IN A HORIZONTAL RIJKE TUBE 

 

A THESIS 

 

submitted by 

 

GOPALAKRISHNAN E. A. 

 

for the award of the degree  

 

of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

DEPARTMENT OF AEROSPACE ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY, MADRAS 

JULY 2016 



THESIS CERTIFICATE 

 

 

This is to certify that the thesis titled BISTABILITY AND NOISE INDUCED TRANSITION 

IN A HORIZONTAL RIJKE TUBE, submitted by GOPALAKRISHNAN E. A., to the Indian 

Institute of Technology, Madras, for the award of the degree of Doctor of Philosophy, is a bona 

fide record of research work done by him under my supervision. The contents of this thesis, in full 

or in parts, have not been submitted to any other institute or University for the award of any degree 

or diploma. 

 

 

 

 

 

Prof. R. I. Sujith 

Research Guide 

Professor 

Department of Aerospace Engineering 

IIT Madras 

 

Place: Chennai 

Date: 7th July 2016                                                                                               



 

 

 

 

 

 

 

 

 

 

Whenever we proceed from the known into the unknown we may hope to understand, but we may 

have to learn at the same time a new meaning of the word 'understanding’. 

Werner Heisenberg, Physics and Philosophy: The Revolution in Modern Science 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

to Sri Mata Amritandamayi Devi (AMMA) 

 

 



i 
 

 

 

ACKNOWLEDGEMENTS 

In Indian philosophy a Guru is described as the one who dispels the darkness of ignorance. I was 

fortunate to have one of such rare Gurus as my Ph. D. advisor. I strongly believe that it is nothing 

other than the grace of my spiritual master which helped me to choose Prof. Sujith as my guide. 

Although I am not one of the brilliant students that he had, he was benevolent enough to guide me 

at times of crises. He modified my idea of research and instilled new thoughts which will definitely 

help me to pursue a career in research. I have no words to thank him for all his help during my    

Ph.  D. 

I wish to thank all my doctoral committee members, Prof. Neelima Gupte, Prof. Nandan Kumar 

Sinha, Prof. Sayana Gupta and Prof. Sameen for their encouragement and help. I am extremely 

thankful to Prof. K. Bhaskar, Head of the Department, for all the support that I have received from 

him. I would like to thank Prof. S. R. Chakravarthy and Prof. T. M. Muruganandam for their 

immense help while I was preparing for my qualifier. 

I wish to thank Prof. Arul Lakshminarayanan who taught me the basic concepts of nonlinear 

dynamics and statistical mechanics. I express my gratitude to Prof. Tangirala from whom I learned 

the basics of linear time series analysis. I also would like to thank Prof. Job Kurian, Prof. M. 

Ramakrishna and Prof. P. A. Ramakrishna for their support and help during my Ph. D. I wish to 

thank Prof. Sunetra Sarkar and Prof. S. T. G. Raghukanth for teaching me the basics of stochastic 

Runge-Kutta method. I thank Prof. G. Ambika who gave me an opportunity to learn nonlinear time 

series analysis and Prof. K. P. Harikrishnan for making me understand many of the techniques 



ii 
 

used in nonlinear time series analysis. I would like to thank Prof. Partho Dutta for hosting me in 

IIT Ropar and for teaching me the basics of devising early warning measures for critical transitions. 

I also thank his Ph. D. student, Ms. Yogita Sharma who helped me to compute the early warning 

measures. 

I have been constantly supported by Mrs. Mekhala, Mrs. Aruna, Mrs. Nirmala, Mr. Kennedy, Mr. 

Manikandan, Mr. Sankar Kumaraswamy, Mr. John George, Mr. Stephen, Mr. Biju Kumar and Mr. 

Dayalan during my Ph. D. 

I would like to express my heartfelt gratitude to Prof. Wolfgang Polifke who invited me to TU 

Munich for an exciting summer school and also who supported me throughout my stay in TUM. I 

also thank Stefan, Malte, Sebatian, Ralf and Camilo who helped me during my stay in TUM. I 

would like to acknowledge the generous funding by the Institute for Advanced Studies, TUM 

during my first visit to Germany to attend the n3l conference and the financial support provided 

by SFB-TRR 40 during my second visit to Germany to attend the summer school. I wish to thank 

Prof. Maria Heckl who gave me valuable inputs during the early years of my Ph. D. I am very 

much indebted to her for lucidly explaining me her inspirational work on Rijke tube. I thank Prof. 

Nicolas Noiray for his help and support in understanding the basics of stochastic dynamics and for 

his specific inputs in understanding Fokker-Planck equation. I also would like to thank Prof. Elena 

Surovyatkina who helped me to understand the bistability and hysteresis found in dynamical 

systems. 

I would like to acknowledge the funding provided by Ministry of Human Resource Development, 

Govt. of India during my Ph. D. and also the generous funding provided by IIT Madras for 

attending the European Fluid Mechanics Conference held at Denmark. I wish to thank Office of 



iii 
 

Naval Research Global (ONRG) for funding my Ph. D. I would like to specially thank Dr. Ramesh 

Kolar (ONRG) who encouraged and inspired me during all the review meetings.    

It will be unfair, if I do not thank Prof. Sarith. P. Sathian and Prof. Balaji Sreenivasan who 

motivated me to do a Ph. D. and who helped me stay focused on my path when I was tempted to 

quit. I will always be grateful to them for their selfless support. I also wish to thank my M-Tech 

thesis advisor Prof. Ajith Kumar for inspiring me to do a Ph. D. 

I would like to thank Lipika who built the Rijke tube setup and the excellent structural design 

helped me observe many interesting dynamics. I have no words to thank Koushik who provided 

many valuable insights to me during my Ph. D. His simple yet elegant model of Rijke tube helped 

me replicate many of the interesting dynamics found in experiments. I wish to thank all my seniors, 

Sathesh, Priya, Lipika, Vivek, Gireesh Sir, Vinu for their constant help and support during the 

early days of my Ph. D. I am sure that without their support I would not have gathered the courage 

to pursue my Ph. D. 

I thank all my colleagues, Unni, Meena, Rana Sir, Abin, Samadhan, Manikandan (GTRE), 

Mukund, Sirshendu, Mridula, Nitin, Akhil, Vishnu (Agni), Tony, Akshay, Sreelekha, Aanveeksha, 

Pavitra, Rama, Manikantan, Syam,  Hashir, Dileep, Dileesh and Thilagaraj for their immense 

encouragement and support during my Ph. D. I am always indebted to them for the unconditional 

help that I have received. I thank Dileesh for helping me during my experiments and for providing 

me a wonderful schematic of my experimental set-up. I thank Meena for her support during my 

JFM submission. She helped me improve my article significantly. I cannot forget the help that I 

have received from Unni, Nitin, Dileesh and Syam when I was ill during the final phase of my Ph. 

D. I specially thank Tony for all the help that he provided during the preparation of my thesis and 



iv 
 

my journal articles. I thank Akshay for teaching me lot of intricate concepts in nonlinear dynamics 

with at most patience. 

One of the most precious companionship that I developed during my Ph. D is with Vineeth Nair. 

I thank him wholeheartedly for all the moral support and technical help that he provided during 

my Ph. D. He always amazed me with his prophetic intelligence combined with unbelievable 

modesty. I learned a lot from Nair. I am sure that he will ever remain as my inspiration throughout 

my scientific journey. 

I am sure that I would not have completed my Ph. D. without the support that I received from my 

family. I thank my mother Vasantha, my sisters Sreevidya and Sudha, my brother Rajesh and my 

brothers-in-law Kumar and Hareesh who supported me during the course of my Ph. D. I 

specifically thank my mother who sacrificed most of her comforts and allowed me to pursue my 

dream irrespective of her difficulties. I also would like to acknowledge the help that I received 

from my niece Aishwarya and Sruti and my nephew Sairam in the form of intriguing questions 

about science and research. 

Above all, I offer my gratitude at the lotus feet of my spiritual master Sri Mata Amritanandamayi 

Devi whom I affectionately call as Amma who gave me the inner courage and strength and who 

uplifted me from all the difficulties during my Ph. D.    



v 
 

ABSTRACT 

KEYWORDS: Bifurcations, Bistability; Subcritical Hopf bifurcation; Noise induced transitions; 

Fokker-Planck equation; Stochastic bifurcations; Critical slowing down; Early 

warning signals; Horizontal Rijke tube.  

Thermoacoustic instability hampers the development of gas turbine engines, solid rocket motors, 

industrial burners and various other engineering systems where the prime source of energy is 

derived from combustion. The instability occurs when the pressure fluctuations inherently present 

in a confinement are in phase with the heat release rate fluctuations of a heat source present in the 

same confinement. The physical reasons of the origin of this instability need to be understood in 

order to implement effective control strategies. Systems which are susceptible to thermoacoustic 

instability are often too intricate to conduct a detailed investigation. This creates the need for a 

prototypical system which is simple enough to investigate, yet retains the essential dynamical 

features of the original system. A horizontal Rijke tube with a mesh type electrical heater is often 

chosen as a model system in literature. 

The present study aims to investigate the bifurcation characteristics of a horizontal Rijke tube with 

special focus on the region of bistability. The influence of system parameters such as heater power 

and heater location on the bistable characteristics of this prototypical thermoacoustic system is 

investigated. A study on the region of bistability is essential as bistability demarcates a subcritical 

Hopf bifurcation from a supercritical Hopf bifurcation. 

As any thermoacoustic system undergoing a subcritical Hopf bifurcation can be triggered to the 

state of oscillations even when the system is stable by fluctuations of the order of background 
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noise, the effect of noise on the bistable nature also needs to be investigated. The change in the 

width of the bistable zone with Strouhal number and noise intensity is studied in the current thesis. 

Both experimental and modelling approaches are employed to achieve the objectives. Experiments 

are performed in a horizontal Rijke tube and the acoustic pressure signals are recorded with the 

help of a piezoelectric transducer. A simple mathematical model which resembles a nonlinear 

bistable oscillator is used in the present study. The model, although simple, retains the essential 

features of a thermoacoustic system such as nonlinearity in heat release rate and time delay. The 

effect of noise is captured in the model by using additive Gaussian white noise.  

Often, the transitions found in thermoacoustic systems are sudden and catastrophic which creates 

the need to develop effective early warning measures. The current thesis aims to develop 

precursors based on the theory of critical slowing down and to test the viability of these early 

warning measures in the presence of noise. 

Bifurcation experiments performed in a horizontal Rijke tube reveal that the transition to 

thermoacoustic instability happens via a subcritical Hopf bifurcation for the conditions used in the 

present study. Moreover, a reduction in the non-dimensional width of the bistable zone is observed 

with increase in the value of Strouhal number. The study also reveals the existence of a power law 

relationship between the non-dimensional width of the bistable zone and the Strouhal number. 

From this study, it is clear that the non-dimensional width of the bistable zone remains almost 

independent of the bifurcation parameter used.  

The width of the bistable zone decreases also with increase in noise intensity. This is observed in 

results from experiments and from the mathematical model. The rate of decrease of the non-

dimensional bistable zone with noise intensity is found be linear and independent of Strouhal 
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number. Bistable zone becomes completely indiscernible in the presence of high intensity noise. 

The need to track the evolution in the distribution of the acoustic pressure rather than the absolute 

value of the acoustic pressure in the presence of high intensity noise is brought out in this study. 

Stochastic bifurcation formalism is used to describe the transition in the presence of high intensity 

noise and to this end the associated Fokker-Planck equation is derived. 

The present thesis establishes that early waning measures based on the theory of critical slowing 

are robust precursors to predict impending transitions in a prototypical thermoacoustic system. A 

significant increase in the value of these early warning measures are observed well before the 

transition to thermoacoustic instability. The effectiveness of the precursors based on critical 

slowing down in the presence of noise to predict a subcritical Hopf bifurcation is clearly brought 

out in this study. 

In summary, the current investigation reveals the dependence of the bistable nature of a 

prototypical thermoacoustic system on system parameters and noise present in the system. The 

reduction and suppression of the bistable nature with system parameters and with noise are 

quantified. Finally, precursors based on critical slowing down are employed to predict the 

impending transitions in a horizontal Rijke tube.          

 



ix 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS         i 

 

ABSTRACT           v 

 

LIST OF FIGURES          xiii 

 

ABBREVIATIONS                                 xix 

 

NOTATION                                                                                                                          xxi 

 

1  INTRODUCTION         1 

1.1 Causes and control of thermoacoustic instability ............................................... 2       

1.2 Laboratory scale combustors to study thermoacoustic instability ...................... 5 

1.3 Prototypical thermoacoustic systems…………………………………………. 6 

 1.4 Dynamical system approach…………………………………………………... 11 

  1.4.1 Supercritical and subcritical Hopf bifurcations……………………… 11 

  1.4.2 Bifurcations in thermoacoustic systems ...............................................13 

 1.5 Effect of noise in thermoacoustic systems…………………………………….. 15 

  1.5.1 Noise induced triggering in thermoacoustic systems…………………16 

 1.6 Precursors for transitions in thermoacoustic systems………………………… 19 

 1.7 Summary of the state of the art………………………………………………… 23 

 1.8 Objectives of the thesis ……………………………………………………….. 24 

 1.9 Overview of the thesis ………………………………………………………… 25 

 

2  TOOLS FROM DYNAMICAL SYSTEM THEORY     29 

 2.1 Bifurcations in a dynamical system .................................................................... 29 

  2.1.1 Saddle-node bifurcation ....................................................................... 30 

  2.1.2 Hopf bifurcation ................................................................................... 31 



x 
 

 2.2 Phase space reconstruction ..................................................................................33 

  2.2.1 Optimum time delay .............................................................................34 

  2.2.2  Minimal embedding dimension ...........................................................35 

 2.3 Concluding remarks .............................................................................................39 

3  EXPERIMENTAL SET-UP        41 

 3.1 Experimental set-up …………………………………………………………... 41 

4  THEORETICAL MODEL        45 

 4.1 Conservation equations of momentum and energy…………………………… 46 

 4.2 Non-dimensional equations ................................................................................ 48 

 4.3 Stochastic delay differential equations ................................................................52 

5  INFLUENCE OF SYSTEM PARAMETERS ON THE BISTABLE                

CHARACTERISTICS OF A HORIZONTAL RIJKE TUBE    55 

 5.1 Effect of heater power on bistable characteristics ...............................................55 

 5.2 Effect of heater location on bistable characteristics     …………………………61 

 5.3 Variation of width of the bistable zone with Strouhal number ............................70 

 5.4 Concluding remarks……………………………………………………………..72 

6  EFFECT OF NOISE ON THE BISTABLE CHARACTERISTICS                                                

OF A HORIZONTAL RIJKE TUBE       75 

 6.1 Reduction in the width of the bistable zone  

in the presence of external noise ..........................................................................73 

 6.2 Suppression of bistable zone in the presence of high amplitude noise....……… 80 

 6.4 Concluding remarks…………………………………………………………..... 85 

7  STOCHASTIC BIFURCATION OBSERVED  

IN A HORIZONTAL RIJKE TUBE        87 

  7.1 Background .........................................................................................................  87 

  7.2 Fokker-Planck equation for a prototypical 

thermoacoustic system .........................................................................................90 

 7.3 Concluding remarks .............................................................................................95 



xi 
 

8  EARLY WARNING MEASURES FOR CRITICAL TRANSITIONS                                             

IN A HORIZONTAL RIJKE TUBE        97 

 8.1 Early warning indicators based on critical slowing down   …………………..... 97 

 8.2 Early warning measures for a subcritical Hopf bifurcation in a Rijke tube ........ 99 

 8.3 Robustness of early warning indicators in the presence of noise ........................102 

 8.4 Concluding remarks ..........................................................................................  108 

9  CONCLUSIONS                         111 

A Stochastic Runge-Kutta method applied to a general stochastic                                                

differential equation                    115 

B Methods to calculate lag-1 autocorrelation and variance    119 

                                 



xiii 
 

LIST OF FIGURES 

 

1.1 Bifurcation characteristics of a measure M when a control parameter μ is varied.                             

(a) Supercritical bifurcation. (b) Subcritical bifurcation. In supercritical bifurcation, as the 

control parameter reaches the value of zero, low amplitude stable limit cycle oscillations are 

born. Unlike the supercritical bifurcation, large amplitude oscillatory solutions are present right 

at the onset of instability in the case of a subcritical bifurcation. The system is bistable in the 

hysteresis region BCEF and the stability of the system is dependent on the initial conditions in 

this region. ● – Stable oscillatory solutions. ○ – Unstable oscillatory solutions. The figures are 

obtained from the normal form equations of Hopf bifurcation……………………………… 12 

2.1 The variation of ˆ( )I   with ̂  for acoustic pressure time series corresponding to limit cycle 

oscillations observed in horizontal Rijke tube. The time delay corresponding to the first minima 

of AMI is considered as the optimal time delay........................................................................35 

2.2 The variation of E1(d) and E2(d) with d for acoustic pressure time series corresponding to limit 

cycle oscillations observed in horizontal Rijke tube. It can be seen that E1(d) saturates around 

d = 11. Hence, the minimal embedding dimension is taken as 12.............................................38 

2.3 The reconstructed phase portrait of acoustic pressure time series corresponding to limit cycle 

oscillations observed in horizontal Rijke tube. It can be seen that the topological structure in 

the phase space is an isolated closed trajectory which represents a limit cycle.........................38 

3.1 Schematic of the experimental setup. A blower is used to provide the mean flow and a flow 

meter is used to measure the flow rate. A DC power supply unit is used to heat the wire mesh. 

The acoustic pressure is measured using piezoelectric transducers and the temperature is 

measured with the help of K- type thermocouple. A traverse mechanism is used to change the 

location of the electrical heater. …………………………………………………………….. 42 

4.1 Schematic of the Rijke tube setup considered for numerical modelling. The thickness of the 

heater wire is negligible compared to the acoustic length scale L.............................................46 

5.1 Experimental bifurcation diagram displaying the values of acoustic   pressure P measured at     

x = 30 cm for a quasi-steady variation in the power supplied to heater K. The system undergoes 

a subcritical Hopf bifurcation at K =337 W and a fold bifurcation at K = 307 W. BCDF 

represents the hysteresis region where the system is in a bistable state. The heater is located at 
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(b) for mass flow rate ṁ = 2.34 g/s. The hysteresis zone is not observable for ṁ = 1.25 g/s 
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 μ   Control parameter 

M   Measure   

α   Cold decay rate 

K   Heater power 

xf   Heater location 

P   Median of the peak acoustic pressure 

χ   Width of the bistable zone 

χ0   Width of the bistable zone in the absence of external noise 

μH   Value of the control parameter at the Hopf point 

μf   Value of the control parameter at the fold point 

β   Non-dimensional noise intensity 

ṁ   Mass flow rate 

u´   Non-dimensional acoustic velocity 

p´   Non-dimensional acoustic pressure 

Ma   Mach number 

γ   Ratio of specific heats 

Q    Non-dimensional heat release rate fluctuation 

k   Non-dimensional heater power 

Lw   Length of the heater wire 

dw   Diameter of the heater wire 

Tw   Temperature of the heater wire 

p    Mean pressure 

T    Mean temperature 

    Mean density 

u0   Mean velocity 
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    Time varying co-efficient of acoustic velocity 

    Time varying co-efficient of acoustic pressure 
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σ   Strength of the additive noise 
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ξ(t)   Gaussian white noise with zero mean and variance proportional to (Δt)1/2 
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c0   Speed of sound in air at mean temperature 

A   Cross-sectional area of the horizontal Rijke tube 
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Δp   Width of the bin used in histogram of p 

W(t)   Wiener process 

I   Intensity of additive noise used in the numerical model 

p(a,t)   Transition probability density function 
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CHAPTER 1 

INTRODUCTION 

Combustion of fossil fuels provide more than 80% of the global energy supply. Land based gas 

turbine engines, jet engines used for aviation, and rocket engines fall into the category of 

combustion dependent power generating systems. One of the major hassles in the development of 

energy efficient power generating systems is the phenomenon of combustion instability or 

thermoacoustic instability. In a combustion system, power is generated by the burning of fuel 

inside a chamber. The chamber or the duct often acts as an acoustic resonator and the inherent 

acoustic fluctuations of the duct are amplified in the presence of the heat source. The inherent 

fluctuations present in the acoustic field of the confinement perturb the heat release rate from the 

heat source and these perturbations in the heat release rate, in turn, affect the acoustic field. The 

amplification of the acoustic field happens when the heat release rate fluctuations are in phase with 

the inherent acoustic pressure perturbations (Rayleigh, 1878). Thus, the positive feedback between 

the acoustic field and the heat source results in thermoacoustic instability. 

Acoustic oscillations grow in amplitude by extracting energy from the heat source; however the 

saturation of acoustic oscillations occur due to the inherent nonlinearities present in the system. If 

the frequency of these acoustic oscillations match with the natural frequency of the chamber, 

resonance results which leads to structural damage. Thermoacoustic oscillations can also cause the 

damage of guidance and control systems in rockets and missiles (McManus et al., 1993; Lieuwen, 

2012).  
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Moreover, these high amplitude oscillations are often observed when we operate at very lean fuel 

air ratios. Operating at rich fuel air ratios is also not desirable as it results in increased emissions. 

So combustion instability acts as an impediment to proceed towards emission-free combustion. 

These self-sustained high amplitude pressure oscillations also result in plane crashes due to engine 

failure and operational failure of space rockets (Fisher & Rahman, 2009). Thus combustion 

instability causes billions of dollars of revenue loss for the power generating industry (McManus 

et al., 1993; Lieuwen, 2012). Hence, it is highly pertinent to understand the mechanisms that lead 

to thermoacoustic instability. 

1.1 Causes and control of thermoacoustic instability 

Thermoacoustic instability is the result of complex nonlinear interactions between the inherent 

acoustic waves of the confinement, unsteady heat release rate from the heat source and the 

hydrodynamics of the associated flow. Many different mechanisms are identified which can lead 

to the onset of large amplitude, self-sustained acoustic oscillations.  

A combustion process in a practical combustor involves many different time scales such as the 

evaporation time scale of the liquid fuel, convection time scale, acoustic time scale and chemical 

time scale. If there exists a parity of any of these timescales it can result in the onset of 

thermoacoustic instability (Polifke, 2004).  

The presence of large scale coherent structures in the flow also can lead to combustion instabilities 

(Zinn & Lieuwen, 2005). These coherent structures are a result of different flame holding 

mechanisms such as a V-gutter in an afterburner or a bluff body in a turbulent combustor. The 
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large scale structures present in the flow force the heat release to become periodic. This flow-flame 

interaction eventually leads to the onset of thermoacoustic instability. 

In the case of premixed burners, equivalence ratio fluctuations act as the source of combustion 

instability. The fluctuations in the equivalence ratio can lead to unsteady heat release rate. The 

flame with the unsteady heat release rate act as a potential source of sound (Lieuwen et al., 2001). 

The acoustic waves generated from the unsteady heat source can further perturb the equivalence 

ratio and a positive feedback develops which results in thermoacoustic instability (Lieuwen et al., 

2001). 

The inherent flow fluctuations present in a turbulent combustor can also eventually lead to 

thermoacoustic instability. The fluctuations in the turbulent flow alter the flame dynamics and the 

perturbations in the flame enhance the inherent acoustic fluctuations which in turn influences the 

turbulent fluctuations. Thus the feedback between heat release rate and acoustics mediated by the 

turbulent flow results in combustion instability. 

Another important mechanism that is responsible for the onset of large amplitude oscillations is 

the presence of entropy waves (Marble & Candel, 1977). The entropy waves originate as 

temperature fluctuations generated by the unsteady heat release rate. If these entropy waves are 

accelerated as it can happen in the combustor exit or turbine inlet, they generate acoustic waves. 

The acoustic waves generated from entropy waves are termed as indirect combustion noise and 

the interaction of indirect combustion noise with the heat source can cause the onset of combustion 

instability (Bake et al., 2009; Goh & Morgans, 2013). 

In short, many different mechanisms can result in the onset of large amplitude, self-sustained 

thermoacoustic oscillations and these oscillations can result in structural damage and reduced 
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performance. Hence, mitigation or control of these oscillations is highly necessary. Various control 

techniques are adopted to mitigate thermoacoustic instability in combustors. Some of the control 

techniques focus on the hardware changes of the combustor and are passive in nature. Many active 

control measures are also developed to control thermoacoustic oscillations. 

The passive control measures include, but are not limited to the changes in the structural design of 

the combustor, the use of Helmholtz resonators, changes in fuel injection distribution pattern and 

the use of acoustic liners. Passive strategies focus on either dissipating the acoustic energy or 

avoiding the onset of oscillations by design modifications such as the changes in the dimension of 

combustors to avoid the possible resonant modes. Passive strategies do not involve any dynamic 

change in the system parameters and have limited viability. On the other hand active control 

strategies focus on perturbing the system parameters so as to prevent the growth of the detrimental 

thermoacoustic oscillations. The system parameters are modified by implementing an actuator. 

The typical actuator units used in combustion systems are acoustic drivers to generate acoustic 

waves or servo valves to control the flow rates (McManus et al., 1993). However, it may be 

difficult to employ the acoustic actuators for full-scale combustors. Another important mechanism 

for implementing active control is secondary fuel injection. Instead of controlling the acoustic field 

directly, secondary fuel injection controls the heat release rate by appropriately timing the injection 

through the pilot injector (Hantschk et al., 1996; Zinn & Neumeier, 1997).  

In order to effectively implement the control strategies, a complete understanding of 

thermoacoustic oscillations are necessary. Controlled experiments are essential to understand the 

physics of thermoacoustic oscillations. Many different laboratory scale combustion systems are 

used to perform controlled experimental studies. 
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1.2 Laboratory scale combustors to study thermoacoustic instabilities 

Different types of combustor configurations were used in order to study the phenomenon of 

combustion instability. Both laminar and turbulent configurations are employed for understanding 

the dynamics of thermoacoustic instabilities. Similarly, premixed, partially premixed and non-

premixed configurations were also used by various researchers (Lieuwen & Zinn, 1998; 

Venkataraman et al., 1999; Lieuwen, 2003; Kabiraj & Sujith, 2012; Jegadeesan & Sujith, 2013; 

Nair & Sujith, 2014). 

One of the prevalent experimental setups employed to investigate thermoacoustic instability is 

ducted flames. The experimental setup consists of an optically accessible duct in which the flame 

will be held. The fuel – air mixture can be premixed, partially premixed or non-premixed. Both 

laminar and turbulent versions of ducted flames are used to understand the dynamics of 

thermoacoustic oscillations (Birbaud et al., 2008; Karimi et al., 2009; Kabiraj, 2012; Jegadeesan, 

2012). 

Apart from ducted flames, many model gas turbine combustors are also employed for investigating 

the physics of combustion instability. These combustors differ with each other in terms of the 

flame holding mechanism employed. The flame holding devices in these combustors can be a bluff 

body, a back ward facing step or a swirler. Depending upon the Reynolds number of the mean 

flow, these combustors can be laminar or turbulent (McManus & Bowman, 1991; Venkataraman 

et al., 1999; Zahringer et al., 2003; Shanbhogue et al.,  2009; Komarek & Polifke, 2010; Lieuwen, 

2012; Nair, 2014; Thampi, 2015).  
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Although, these model combustors reveal the dynamics associated with combustion instability, 

performing controlled experiments in these combustors is not an easy task. Moreover, repeatability 

of the results is also difficult to achieve. These difficulties can be bypassed by employing a 

canonical system which retains the essential features of thermoacoustic systems, but simple 

enough for detailed analysis.   

1.3 Prototypical thermoacoustic systems 

A horizontal Rijke tube, a horizontal duct with a concentrated heat source, is a prototypical system 

often chosen to study the intricacies of thermoacoustic instabilities in the past (Matveev, 2003; 

Balasubramanian & Sujith, 2008; Subramanian et al., 2010; Juniper, 2011; Mariappan, 2011). The 

heat source in a Rijke tube can be a flame or an electrically heated wire mesh. In a traditional 

vertical Rijke tube, the mean flow is set up by buoyancy. The vertical configuration avoids the 

need of an external means to create the mean flow. However, the flow rate will be dependent on 

the heat release rate and hence it is not possible to control the flow rate independently. In contrast, 

in a horizontal Rijke tube, the mean flow has to be established by external means and hence can 

be controlled independently.   

Rijke tube derives its name from its inventor who first observed sustained acoustic oscillations 

when a heated wire gauze was placed in a glass tube open at both ends (Rijke, 1859). Although 

Rijke provided an explanation for the observed acoustic oscillations, it was proved to be incorrect. 

Thereafter, there were many studies investigating the reason for Rijke oscillations (Lehman, 1937; 

Pflaum, 1909; Rayleigh, 1878). Pflaum (1909) wrongly concluded that the oscillations were 

caused by wire vibrations induced by gas flow. Flow reversal was suggested as the reason for Rijke 

oscillations by Lehman (1937). However, his experimental results never confirmed the necessity 
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for flow reversal. The most appropriate explanation consistent with the experimental observations 

was given by Rayleigh (1878).  

There were many attempts to model the Rijke oscillations. Neuringer & Hudson (1952) proposed 

a model which was able to explain the absence of oscillations when the heater was located in the 

second half of the Rijke tube. They linked the establishment of oscillations to the turbulent heat 

transfer and proposed the idea of ‘negative velocity gradient’ heaters. A heat driven wave equation 

was derived by Putnam & Dennis (1954) and they verified the validity of Rayleigh criteria. Using 

fundamental principles of fluid mechanics, Merk (1957) developed a mathematical model for 

thermoacoustic systems by assuming constant temperature and a concentrated heat source and 

introduced the concept of transfer functions in the Rijke tube analysis. 

The major purpose of the experimental studies conducted in Rijke tube was to determine the 

stability boundaries for different system parameters. Some of the important experimental studies 

are those performed by Saito (1965), Collyer & Ayres (1972), Katto & Sajiki (1977) and by 

Madarame (1981). However, none of them reported the order in which various parameters were 

varied. Further, experimental uncertainties were also not mentioned.  

Saito (1965) investigated the onset of Rijke oscillations both by performing experiments and by 

theoretical analysis. He concluded that the onset of oscillations depends upon the phase between 

the acoustic velocity and the acoustic pressure at the heater location. Hence, he concluded that the 

heater must be located at the upstream half of the duct for the onset of thermoacoustic oscillations. 

Collyer & Ayres (1972) demonstrated the Rayleigh criterion with the help of experiments where 

they used two electrical heaters in a Rijke tube. They showed that a heater located at 3l/4 from the 

upstream end can suppress the first mode oscillations caused by a heater located at l/4. Further, 
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they were able to excite second mode and third mode by suitably positioning the heaters. In short, 

the experimental results of Collyer & Ayres (1972) were in agreement with the Rayleigh criterion.   

Katto & Sajiki (1977) studied the onset of thermoacoustic oscillations in an open-open duct with 

an electric heater. They calculated the critical heater power required for the onset of oscillations 

for different flow rates. They also studied the effect of varying the heater location and changing 

the length of the duct. Different types of electrical heaters were also tested by Katto & Sajiki 

(1977). They concluded that the thermoacoustic system remains in the non-oscillatory state for 

high as well as low mass flow rates for a given heater power. They also reported that the critical 

heater power required is minimum when the heater is located at l/4 from the upstream end where 

l represents the length of the duct.                    

Madarame (1981) also developed a model to predict the growth rate based on mean flow velocity 

and heater temperature. However, Madarame (1981) made no attempt to explain the limit cycle 

oscillations observed in his experiments. A limit cycle oscillation is one in which the amplitude of 

oscillation is limited by nonlinear saturation mechanisms. Madrame (1981) provided the 

experimental evidence for the existence of regions in Rijke tube where both first and second mode 

are excitable. He showed experimentally that both modes can be excited if the heater is located l/8 

from the upstream end.  

 Bayely (1986) developed a model of Rijke oscillations where the heat transfer from the heater 

was related to the acoustic velocity. He observed saturation of the acoustic pressure amplitude and 

attributed the same to the nonlinearities. Further, he reported the possibility of observing 

hysteresis. 
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In a pioneering study, Heckl (1985) explored the nature of thermoacoustic oscillations in a Rijke 

tube and also implemented control strategies. Heckl (1985) adopted a control volume approach 

and the balance of acoustic energy to identify the nature of oscillations in the Rijke tube. Using 

the non-linear theory, Heckl (1985) predicted the amplitude of limit cycle oscillations. Further, 

Heckl (1988) initiated the efforts to implement active control to suppress the Rijke oscillations. In 

a subsequent work by Heckl (1990), the nonlinear effects in a Rijke tube were studied 

experimentally and a model for predicting the limiting amplitude was proposed. The reasons for 

the presence of a limiting amplitude were explained by comparing nonlinear driving and damping 

terms. A major contribution by Heckl (1990) is the use of modified King’s law to model the heat 

release rate from a heated wire.  

Instability in a Rijke tube was studied by Hantschk & Vortmeyer (1999) with the help of a 

commercially available CFD code (Fluent 4.4.4). Experimental results were matching with the 

simulation. However the comparison was done only for one experimental condition.     

In another important work by Matveev (2003), the stability boundaries for three characteristic 

heater positions L/8, L/4 and 5L/8 were determined by considering heater power as the bifurcation 

parameter. The stability margins for different mass flow rates were determined experimentally. An 

important observation was the variation of hysteresis width with mass flow rates. The hysteresis 

width was found to increase with increase in mass flow rate. A linear acoustic theory was proposed 

by Matveev (2003) to predict the onset of oscillations. He also proposed a simple theory to model 

the nonlinear thermoacoustic oscillations. Matveev (2003) studied limit cycle characteristics 

extensively for different modes of excitation and identified the unstable domains of operation of a 

Rijke tube. 
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Selimefendigil & Polifke (2011) employed a lower order model in frequency domain to predict 

the occurrence of limit cycle oscillations in a Rijke tube model which represents a heated cylinder 

in pulsating cross flow. Further Selimefendigil et al. (2011) developed a system identification 

technique and performed non-modal stability analysis of the Rijke tube model.     

One of the noteworthy formalism on the stability analysis of thermoacoustic systems, with special 

focus on Rijke tube, is the Green’s function approach introduced by Heckl and co-workers (Heckl 

& Howe, 2007; Heckl & Kosztin, 2013; Bigongiari & Heckl, 2014; Bigongiari & Heckl, 2015, 

Bigongiari & Heckl, 2016). Heckl & Howe (2007), performed stability analysis of Rijke tube by 

employing the Green’s function approach. They predicted the growth rate of the oscillations in 

terms of the properties of the heat release rate model. The stability of a dump combustor with a 

generic heat release law was investigated by Heckl & Kosztin (2013) using Green’s function 

approach. They derived the governing equation for the single mode in a dump combustor. They 

analyzed the effects of acoustic properties of the resonant chamber, the coupling between the 

acoustics and the heat release rate and a tunable termination of the inlet chamber. Bigongiari & 

Heckl (2014), prescribed a new model to describe the coupling between heat driven modes in a 

Rijke tube. They derived the characteristic equation for the complex eigenfrequencies using the 

Green’s function approach. Their model was able to predict the linear stability boundaries for 

different resonant modes. Further, Bigongiari & Heckl (2015), described the hysteresis and 

oscillations observed in a Rijke tube by employing Green’s function approach. Their model was 

able to predict the hysteresis characteristics of the Rijke tube and the influence of system 

parameters on the observed hysteresis. Recently Bigongiari & Heckl (2016) employed a tailored 

Green’s function which they calculated analytically to predict the salient nonlinear features of 
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thermoacoustic feedback such as limit cycle oscillations, bistability and hysteresis. Their model 

also explained the frequency shift in the acoustic modes.   

1.4 Dynamical system approach 

In many of the investigations performed in thermoacoustic systems, the presence of limit cycle 

and hysteresis are reported. The phenomena such as limit cycle and the presence of hysteresis 

region are specific characteristics of a nonlinear system. Hence, it is clear that thermoacoustic 

systems are nonlinear in nature. 

Nonlinear systems exhibit a sudden change in their qualitative behavior for an infinitesimal change 

in any of the system parameters termed bifurcation in the dynamical systems theory. If this change 

takes the system from a non-oscillatory state to an oscillatory state, it is called a Hopf bifurcation 

(Hilborn, 2000; Strogatz, 2000). Hopf bifurcation can be of two types, supercritical and subcritical. 

1.4.1 Supercritical and subcritical Hopf bifurcations 

In a supercritical Hopf bifurcation, the system remains in the non-oscillatory state until the control 

parameter reaches the critical value. Once the value of the control parameter crosses the critical 

value, the non-oscillatory state becomes unstable and the system goes to the oscillatory state. This 

change is marked by the presence of a low amplitude stable limit cycle. The parameter value at 

which the system loses its stability; i.e. when the non-oscillatory state becomes unstable, is called 

the Hopf point (Point B in figure 1(a, b)). 

In the case of a subcritical bifurcation, the system experiences large amplitude oscillations right at 

the onset of instability. Moreover, while changing the operating conditions along the reverse path, 

the control parameter needs to be varied to a value significantly beyond the critical value to bring 
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the system back to the non-oscillatory state. The parameter value at which the system regains its 

stability when the control parameter is varied along the reverse path (Point E in figure 1(b)), is 

called the fold point (Hilborn, 2000; Strogatz, 2000; Subramanian et al., 2010). The existence of 

a fold point along with the Hopf point results in the presence of a hysteresis region (Region BCEF 

in figure 1(b)).  

 

Figure 1.1:  Bifurcation characteristics of a measure M when a control parameter μ is varied.               

(a) Supercritical bifurcation. (b) Subcritical bifurcation. In supercritical bifurcation, 

as the control parameter reaches the value of zero, low amplitude stable limit cycle 

oscillations are born. Unlike the supercritical bifurcation, large amplitude oscillatory 

solutions are present right at the onset of instability in the case of a subcritical 

bifurcation. The system is bistable in the hysteresis region BCEF and the stability of 

the system is dependent on the initial conditions in this region. ● – Stable oscillatory 

solutions. ○ – Unstable oscillatory solutions. The figures are obtained from the 

normal form equations of Hopf bifurcation.  

The system is said to be bistable in the hysteresis region as the system can remain in two different 

asymptotic states depending upon the initial conditions. However, in a supercritical bifurcation, 
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the stability of the system is independent of the initial conditions. As soon as the control parameter 

value is brought back to the critical value, the system goes back to the non-oscillatory state in the 

case of supercritical bifurcation (figure 1(a)). Thus the presence of the bistable region can be used 

as a good indicator to establish the presence of subcritical Hopf bifurcation (Hilborn, 2000; 

Strogatz, 2000). 

1.4.2 Bifurcations in thermoacoustic systems  

Lieuwen (2002) reported the presence of both subcritical and supercritical Hopf bifurcations in an 

industrial gas turbine simulator. He also reported that the nature of Hopf bifurcation is sensitive to 

background noise. Ananthakrishnan et al. (2005) proposed reduced order models which captured 

the nonlinear behavior of thermoacoustic systems. The models proposed by Ananthakrishnan et 

al. (2005) were able to exhibit the phenomenon of triggering reported in thermoacoustic systems. 

The process in which a system remains stable for perturbations of low amplitude, but becomes 

unstable for a perturbation of finite amplitude, is termed triggering in thermoacoustic literature 

(Dickinson, 1962; Brownlee, 1964; Cantrel et al., 1965; Brownlee & Kimbell, 1966; Marxman & 

Wooldridge, 1971; Levine & Baum, 1982; Wicker et al., 1996).  

A model of the horizontal Rijke tube, proposed by Balasubramanian & Sujith (2008), captured 

many of the features including the subcritical nature of the transition, often observed in 

experiments. They established the non-normal and nonlinear nature of thermoacoustic oscillations 

using the model. It was shown that non-normal nature of the system will cause the short term 

growth of oscillations before their eventual decay even when it is linearly stable. It was also 

observed that this transient growth can trigger the nonlinear oscillations. The major conclusion 
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from this study was that the linear stability analysis is insufficient; instead transient growth factor 

has to be determined in the case of non-normal systems. 

Mariappan (2011) performed a set of experiments on a horizontal Rijke tube to provide the 

experimental evidence for the existence of non-normality in thermoacoustic systems. Threshold 

amplitude levels for linear behavior of the system were established. The technique of Dynamic 

Mode Decomposition (DMD) was used to extract the eigenmodes of the duct. The eigenmodes 

were shown to be non-orthogonal by finding their inner product. An increase in the value of inner 

product was found to occur with increase in the power supplied to heater. This work provided 

experimental evidence for the non-normal nature of thermoacoustic oscillations. He also observed 

subcritical transition to limit cycle oscillations in experiments.   

Subramanian et al. (2010) employed the numerical continuation method to find out the stability 

boundaries and to obtain the bifurcation plots. The horizontal Rijke tube model developed by 

Balasubramanian & Sujith (2008) was used by Subramanian et al. (2010). They identified the 

stability boundaries of the Rijke tube model for different system parameters such as heater power, 

heater location, damping ratio and time lag. Further, they reported the period doubling route to 

chaos in the Rijke tube model. They also identified the parameter regimes of quasiperiodic 

oscillations in the Rijke tube model. In a subsequent study, Subramanian et al. (2012) used the 

method of multiple scale to recast the Rijke tube model developed by Balasubramanian & Sujith 

(2008) to Stuart-Landau equation near the Hopf point. Further, they identified that the transition 

to thermoacoustic instability happens via a subcritical Hopf bifurcation. They also found the 

parameter regimes where triggering is possible.  
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Kabiraj et al. (2012a) performed experiments in a ducted laminar premixed flame and established 

the presence of secondary bifurcations in thermoacoustic systems. They observed a series of 

bifurcations with change in the control parameter. The technique of phase space reconstruction 

from a time series obtained from experiments was clearly explained by Kabiraj et al. (2012a). They 

established the routes to chaos for the first time in thermoacoustics. In a subsequent work, Kabiraj 

et al. (2012b) identified the different routes to chaos in a thermoacoustic system. They observed 

that the thermoacoustic system transitions to chaos via a Ruelle-Takens scenario. Kabiraj & Sujith 

(2012) reported intermittent oscillations prior to blow out in a ducted laminar premixed flame. 

They identified the intermittent oscillations to be of Type-II intermittency and also observed 

subcritical Hopf bifurcation during the transition to thermoacoustic instability.    

1.5 Effect of noise in thermoacoustic systems 

A system exhibiting subcritical transition will remain non-oscillating in the bistable region for 

perturbations within the basin of attraction of the fixed point. On the other hand, the system will 

oscillate in the bistable region, if the amplitude of perturbations is outside the basin boundary of 

the fixed point, but well within the basin of attraction of the limit cycle. 

Zinn & Lieuwen (2005) reported that perturbations of the order of background noise levels are 

sufficient to trigger a thermoacoustic system. Lieuwen & Banaszuk (2005) expressed the view that 

the turbulent fluctuations present in practical thermoacoustic systems can be thought of as additive 

and parametric sources of noise. Waugh et al. (2011) and Waugh & Juniper (2011) performed a 

detailed numerical study on the effect of various types of noise such as white, pink and blue noise 

on triggering a thermoacoustic system to instability using the model of horizontal Rijke tube 

proposed by Balasubramanian & Sujith (2008). White noise is one in which energy is equally 
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distributed among all the frequencies and the power spectrum is flat, as in the case of white light. 

In the case of pink noise, the amount of energy content in a particular frequency is inversely 

proportional to the value of the frequency and the power spectrum varies as 1/f, where f is the 

frequency. Blue noise has a power spectrum which varies as f and consequently the higher 

frequencies contain more energy (Ojalvo & Sancho, 1999). 

1.5.1 Noise Induced triggering in thermoacoustic systems 

Waugh et al. (2011) found that triggering is strongly dependent on the strength and the color of 

the noise. They suggested that pink noise is the most effective in triggering the system to instability 

whereas blue noise can even inhibit the phenomenon of triggering. Waugh et al. (2011) also 

observed that a thermoacoustic system can become unstable in the presence of noise even if it is 

in the linearly stable regime. They reported that the system will reach the state of stable limit cycle 

oscillations from a non-oscillatory state via a state of unstable limit cycle oscillations. Waugh & 

Juniper (2011) found that the system will dislodge itself from the oscillatory solution if the noise 

amplitude is high. They introduced stochastic stability maps to visualize the practical stability 

regimes of a thermoacoustic system in the presence of noise. 

Jegadeesan & Sujith (2013) showed experimentally that for a ducted non-premixed flame, noise-

induced triggering to instability is possible. They also obtained the deterministic and stochastic 

stability maps. Using nonlinear time series analysis, they constructed phase portraits and found 

that when the system is triggered, the transition to instability happens via an unstable limit cycle 

oscillation, as predicted by Juniper (2011). Jegadeesan & Sujith (2013) experimentally validated 

the observation made by Waugh et al. (2011) that the transition to instability happens even when 

the noise level is significantly below the triggering amplitude. However, Waugh et al. (2011) and 
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Waugh & Juniper (2011) reported no change in the amplitude of the limit cycle oscillations in the 

presence of noise. In contrast, Jegadeesan & Sujith (2013) reported a reduction in the amplitude 

of the limit cycle oscillations in the presence of noise. They attributed this decrease in amplitude 

to a decrease in the correlation between the pressure oscillations and the heat release rate 

fluctuations in the presence of external noise. 

Outside the context of thermoacoustics, the effect of noise on the transitions that can happen in 

nonlinear systems is well studied and it is referred to as noise induced transitions (Horsthemke & 

Lefever, 2006). Noise induced transition refers to the effect of fluctuations on the dynamics of a 

system and the appearance of novel dynamical features which are not present in the deterministic 

system. Horsthemke & Lefever (2006) discussed the various noise induced transitions that can be 

observed in physical, chemical and biological systems. They also detailed about the noise induced 

non-equilibrium phase transitions.  

Aumaitre et al. (2007) studied the noise induced transitions that can be observed in a nonlinear 

oscillator. They found that noise can suppress a global attractor and also can stabilize an unstable 

fixed point. They also reported noise induced intermittency and noise induced multi-scaling. They 

found that both noise induced intermittency and noise induced multi-scaling depend upon the 

power spectrum of the noise rather than on the amplitude of the noise. 

The addition of noise in the normal form equation of Hopf bifurcation changes the dynamics of 

the system and introduces novel dynamical states (Sastry & Hijab, 1981). The presence of additive 

or parametric noise can also induce global asymptotic stability in prototypical dynamical systems. 

The phenomenon of noise induced stability is observed for both supercritical and subcritical Hopf 

bifurcations (Mackey et al., 1989).  In the case of Hopf bifurcation, the presence of additive noise 
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is found to smear out the sharp transition that is observed in a deterministic system (Juel et al., 

1997). Thus the determination of the Hopf point from experimental and numerical observations 

becomes impossible in the presence of additive noise. This difficulty in determining the bifurcation 

point is because the measured observable is no longer a deterministic quantity but a stochastic 

variable. Thus a single realization that we obtain in an experiment or from a mathematical model 

is incapable of providing the complete information about the state of the system. In the presence 

of noise, stochastic differential equations (SDEs) are adopted instead of ordinary differential 

equations to describe the evolution of the system. Hence, we need to calculate the probability 

density function of the observable rather than its absolute value in the presence of noise. The 

probability density function of a stochastic variable can be obtained by solving the Fokker-Plank 

equation associated with the SDE (Stratonovich, 1963, Gardiner, 1997, Risken, 1989). The 

qualitative changes observed in the probability distribution of the observable are termed as 

phenomenological bifurcations (P-bifurcation).  

Bifurcations observed in the presence of noise in a nonlinear system are termed stochastic 

bifurcations. There are studies on the effect of additive and multiplicative noise in inducing 

stochastic bifurcations in nonlinear systems. L’Heureux & Kapral (1989) studied the effect of 

external white noise on a bistable system which transits between a limit cycle and a fixed point. 

They found that the stationary probability distribution changes from unimodal to bimodal for 

moderate noise intensities. Once the noise intensity is high, the bimodal distribution becomes 

unimodal again. Additive noise does not change the location of the extrema of the stationary 

probability density function whereas multiplicative noise introduces novel dynamical states 

(Bashkirtseva et al., 2015).   
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The phenomenon of stochastic bifurcation is very well studied using models. The stochastic Hopf 

bifurcation is studied in the context of various nonlinear oscillators (Arnold et al., 1999; Zakharova 

et al., 2010; Xu et al., 2011; Bashkirtseva et al., 2015) and in biological systems including neuron 

models, synthetic gene oscillators (Zakharova et al., 2010; Djeundam et al., 2013) and cellular 

networks (Song et al., 2010). The framework of stochastic bifurcation is also used to study the 

effect of noise in self-sustained bistable oscillators (Zakharova et al., 2010). However, 

experimental studies on the concept of stochastic bifurcation are limited to driven laser systems 

(Billings et al., 2004).  

Noiray & Schuermans (2013a, 2013b), in their pioneering work, introduced Fokker-Planck 

formalism in the thermoacoustic literature. They derived the F-P equation for a thermoacoustic 

system undergoing supercritical Hopf bifurcation. Their primary focus was to derive growth and 

decay rates of thermoacoustic oscillations for the unsteady pressure data obtained from a gas 

turbine engine and compare it with the numerical model.  

Yamapi et al. (2012) derived an effective F-P equation for a birhythmic Van der Pol oscillator. 

They derived the probability distributions both analytically and numerically. They found that the 

bistable region decreases with increase in noise intensity and gets completely suppressed beyond 

a threshold noise intensity.      

1.6 Precursors for transitions in thermoacoustic systems 

The presence of bistable region and the presence of large amplitude oscillations right at the onset 

of instability make the subcritical transitions difficult to deal with. It becomes difficult to bring 

back the system to the non-oscillatory state once the system is transitioned to oscillatory state in 
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the case of subcritical transition. The transitions observed in such bistable systems are referred to 

as catastrophic transitions (Scheffer et al., 2009; Kuhen, 2011; Scheffer et al., 2012). The 

catastrophic nature of these transitions creates the need to develop precursors.    

Recently, Sujith & co-workers developed a plethora of precursors by employing the concepts of 

dynamical system theory and complex system theory. Nair et al. (2013) proposed that transition 

to thermoacoustic instability in turbulent combustion systems can be viewed as a transition from 

chaos to order. They employed 0-1 test to predict the onset of thermoacoustic instability. Nair & 

Sujith (2014) reported that the transition to thermoacoustic instability represents loss of 

multifractality of acoustic pressure time series. They proposed Hurst exponent as a measure to 

predict the impending instability. Later, Unni & Sujith (2015) showed that the transition to blowout 

can also be predicted by computing the Hurst exponent of the acoustic pressure time series. 

Murugesan & Sujith (2015 a & b) applied the concepts from complex system theory and developed 

a set of precursors based on complex networks derived from the time series of unsteady pressure.  

Gotoda et al. (2014) proposed an online method to detect combustion instability by utilizing the 

precursors developed based on dynamical system theory. They used translation error as a precursor 

and they also determined the nature of dynamical states close to blow out by recurrence analysis. 

Further, Domen et al. (2015) employed methods of multiscale entropy and nonlinear forecasting 

to detect and predict the occurrence of lean blowout. They also adopted measures such as 

correlation coefficient and permutation entropy to identify the complex dynamical states near the 

lean blowout limit.    

It should be noted that the precursors discussed above are effective in predicting transitions in 

turbulent systems. Nair et al. (2014) showed that the transition to thermoacoustic instability 
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happens via a state of intermittency in turbulent systems. Further, Nair (2014) clearly explained 

the role of intermittency in developing the early warning measures to predict thermoacoustic 

instability. As pointed out by Nair (2014), the effectiveness of these precursors to predict 

thermoacoustic instability depends on the presence of intermittency.  

Another set of precursors that can be found in literature are developed for noisy systems. 

Wiesenfeld (1985) in his pioneering work proposed noisy precursors to predict the occurrence of 

bifurcations in nonlinear systems. He reported that the width of the peak frequency in the amplitude 

spectrum acts as a measure of proximity to an impending transition. He also showed that the nature 

of the impending bifurcation can be clearly understood by observing the appearance of peak in the 

amplitude spectrum. Thus the presence of an optimum amount of noise in a nonlinear system 

enhances the possibility of detecting the impending transition. 

Later, this noise induced enhancement of the output from a nonlinear system was observed in both 

forced and self-excited systems. In a forced system, the noise induced enhancement of the output 

was termed stochastic resonance and in a self-excited system, similar phenomenon was termed 

coherence resonance. Recently Kabiraj et al. (2015) observed the phenomenon of coherence in an 

experiment performed in a thermoacoustic system and suggested the use of noisy precursors to 

predict the transitions observed in a thermoacoustic system.   

Apart from the precursors described above, there exists another important class of precursors based 

on critical slowing down. Critical slowing down refers to the phenomenon where the real part of 

the dominant eigenvalue approaches zero as a nonlinear system undergoes a bifurcation. As the 

real part of the dominant eigenvalue approaches zero, the time taken for the perturbations to die 

down increases. The critical slowing down also results in an increase in autocorrelation, as the 
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system memory increases. Since the perturbations do not decay as we approach a bifurcation due 

to critical slowing down, the variance also increases. 

Over the years, many early warning measures based on critical slowing down were developed to 

detect critical transitions in nonlinear systems. A pioneering study on early warning signals was 

carried out by Scheffer et al. (2009). They proposed a plethora of early warning measures to predict 

the sudden changes in eco systems, climatic shifts, collapse of financial markets and the onset of 

asthmatic attacks and epileptic seizures. In a subsequent work Scheffer et al. (2012) elaborated the 

principle behind the working of early warning indicators. They proposed early warning indicators 

based on critical slowing and also based the phenomenon of flickering. Flickering is the 

phenomenon where a nonlinear system switches between two alternative stable states in the 

presence of noise. Scheffer et al. (2012) proposed autocorrelation and variance as the early warning 

indicators based on the theory of critical slowing down. They also advocated the use of another set 

of early warning indicators in the presence of noise. 

Dakos et al. (2012) compared the different early warning indicators in terms of ease of 

implementation and their effectiveness in predicting the impending transition. They carried out 

their investigations on two simulated data sets which depict critical transition. They discussed the 

metric based and the model based early warning indicators.     

We can find an extensive use of these early warning measures to predict critical transitions in 

almost every field of science starting from ecology and extending up to medicine where these 

measures are used for prognosis (Dakos et al., 2008; Meisel et al., 2015; Livina et al., 2015; Trefois 

et al., 2015). Many studies applied these early warning measures to mathematical models of 

complex systems. The viability of these measures proved also with the help of experiments (Drake 
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& Griffien, 2010; Kramer & Rose, 1985; Tredicce et al., 2004; Carpenter et al. 2011). Recent 

findings indicate that critical transitions that happen via subcritical Hopf bifurcation in spiking 

neurons can be predicted using these early warning measures (Meisel et al., 2015). The 

applicability of early warning measures are not limited to low dimensional reduced order models 

but also extends to high dimensional complex systems (Kuehn et al. 2015).  

1.7 Summary of the state of the art 

In summary, the experimental and numerical investigations conducted on horizontal Rijke tubes 

indicate that the transition from non-oscillatory to oscillatory state is subcritical in nature 

(Balasubramanian & Sujith, 2008; Subramanian et al., 2010; Juniper, 2011; Mariappan, 2011). 

Nonetheless, experimental studies on horizontal Rijke tube where system parameters other than 

heater power are varied are not present in the literature to the best knowledge of the author. The 

subcritical nature of transition observed in the case of Rijke tube model are not yet confirmed by 

experimental observations for system parameters such as heater location.  

Although some experimental studies allude to the reduction in the width of the hysteresis zone 

with decrease in mass flow rate (Matveev, 2003; Mariappan, 2011), further investigations were 

not performed. It is essential to analyze the influence of system parameters on the presence of 

bistable region in the context of a horizontal Rijke tube to get a clear idea on the nature of 

transition. 

The existing literature on effect of noise in thermoacoustics focuses on noise induced triggering 

(Juniper, 2011; Waugh et al., 2011; Waugh & Juniper, 2011; Jegadeesan & Sujith, 2013). In noise 

induced triggering, the focus is on the ability of the noise pulses or continuous noise, both of which 



24 
 

can be colored or white, to trigger a system, which is otherwise linearly stable, to instability. 

Moreover, the effect of high intensity noise on the dynamics of thermoacoustic systems remains 

to be explored. The concept of stochastic bifurcation to describe the transitions in the presence of 

noise is not yet employed in thermoacoustics. 

Precursors based critical slowing down are not yet employed to predict impending transitions in 

thermoacoustic systems. Although there exist enough literature on the use of early warning signals 

based on critical slowing down for predicting the transitions in natural systems, the applicability 

of the measures based on critical slowing down to an engineering system is not yet explored. 

Moreover, the robustness of the early warning indicators in the presence of fluctuations is not yet 

studied in the context of a physical system. As most of the transitions that we observe in 

thermoacoustic systems are associated with bifurcations and as the phenomenon of critical slowing 

down precedes bifurcations, it is possible to develop early warning measures based on critical 

slowing down for thermoacoustic systems. Furthermore, the transitions that we observe in 

thermoacoustic systems are often catastrophic which demands the development of forewarning 

measures.    

1.8 Objectives of the Thesis 

The objective of the present work is to understand the effect of system parameters and noise on 

the bistable characteristics of a prototypical thermoacoustic system. Further, the study aims to 

develop early warning measures for critical transitions observed in thermoacoustic systems.  The 

major objectives are: 
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1. To understand the effect of system parameters such as heater power and heater location on 

the nature of transition and on the bistable characteristics of a prototypical thermoacoustic 

system. 

2. To investigate the effects of external noise on the bistable characteristics of a prototypical 

thermoacoustic system and to analyze the effect of high intensity noise by calculating 

stationary probability distribution from Fokker-Planck equation.  

3. To develop early warning measures based on critical slowing down for the catastrophic 

subcritical transitions observed in a prototypical thermoacoustic system. 

1.9 Overview of the thesis 

The objectives of this study were achieved with the help of experiments conducted in a horizontal 

Rijke tube and numerical simulations performed in a mathematical model of the Rijke tube. The 

time series obtained from the experiments and the mathematical model are analyzed using the tools 

from dynamical system theory. In order to understand the effect of noise on the bistable 

characteristics of the system, external noise was applied with the help of loud speakers in the 

experiment. The numerical model is perturbed with additive Gaussian white noise to understand 

the influence of noise on the nature of transition. The early warning measures were developed by 

exploiting the concepts of critical slowing down.  

The rest of the thesis is arranged as follows. Chapter 2 describes the tools from dynamical system 

theory used for phase space reconstruction. The technique of phase reconstruction along with the 

methods to find the minimum embedding dimension and the optimum time delay is described in 
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this chapter. This chapter also discusses about the bifurcations that we observe in a bistable 

thermoacoustic system and the associated normal form equations. 

The experimental set-up used in the current study is described in Chapter 3. A horizontal Rijke 

tube with an electric heater as the heat source is used in the present study. Chapter 4 details the 

numerical model used in the present study. The Rijke tube model proposed by Balasubramanian 

& Sujith (2008) is recast into a set of stochastic delay differential equations to understand the 

influence of noise and system parameters on the nature of transition observed in the Rijke system. 

Chapter 5 describes the effect of systems parameters, heater power and heater location, on the 

nature of transition to thermoacoustic instability. In this chapter, the dependence of width of the 

bistable zone on Strouhal number is brought out. The decrease in the width of the bistable zone 

with the increase in Strouhal number is shown both in experiments and in the numerical model. 

Moreover, the power law dependence between the width of the bistable zone and the Strouhal 

number is also described in this chapter. 

The effect of noise on the nature of transition and the reduction in the width of the bistable zone 

with increase in noise intensity are discussed in Chapter 6. The influence of noise on Rijke 

oscillations is described with the help of results from experiments and from the mathematical 

model. The decrease in the non-dimensional hysteresis width with non-dimensional noise intensity 

is shown to be linear and independent of Strouhal number in this chapter. The complete 

suppression of bistable zone in the presence of high intensity noise is also described in Chapter 6.  

The phenomenon of stochastic bifurcation observed in the horizontal Rijke tube is discussed in 

Chapter 7. A simplified theoritical model depicting a bistable oscillator is considered to determine 

the probability distribution of acoustic pressure amplitude. The changes in the stationary 
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probability distribution of acoustic pressure are obtained by solving the Fokker-Planck equation 

associated with the governing equations. The regions of bimodality, where the thermoacoustic 

system is bistable are identified. 

Chapter 8 describes the techniques to develop early warning measures for predicting the impending 

transitions observed in a thermoacoustic system. The early warning measures are developed by 

exploiting the concept of critical slowing down near a bifurcation. Lag-1 autocorrelation and 

variance are mainly used as the early warning indicators. The robustness of the early warning 

measures based on critical slowing down in the presence of noise is also established in this chapter. 

The conclusions that can be drawn from the present study are detailed in Chapter 9. This chapter 

also describes the possible extension of the present work to thermoacoustic systems other than the 

one considered here.    
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CHAPTER 2 

TOOLS FROM DYNAMICAL SYSTEM THEORY 

This chapter describes the tools and techniques adopted from dynamical system theory which are 

employed in the current thesis. A detailed description of various types of bifurcations that can be 

observed is provided in this chapter. A discussion on the reconstruction of phase space from a 

scalar time series is also included in this chapter. In many practical situations, the governing 

equations of a dynamical system generating a time series is not known. However, it is still possible 

to understand the dynamics of the system by reconstructing the phase space from the measured 

time series. The two important parameters necessary for the reconstruction of phase space are the 

minimum embedding dimension and the optimal delay. The methods to calculate the embedding 

dimension and time delay for time series obtained from experiments are described in this chapter. 

2.1 Bifurcations in a dynamical system 

A system whose state evolves in time according to a dynamical law can be defined as a dynamical 

system. The most general description of a dynamical system is 

( , )                                                                                                                            (2.1)
dX

F X
dt

   

where, X represents the state space vector and Z  represents the vector of system parameters. As 

explained in Chapter 1, a dynamical system will undergo sudden change in its qualitative behavior 

for an infinitesimal change in any of the system parameters. This sudden change in qualitative 
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behavior is termed as bifurcations in the dynamical system literature (Strogatz, 2000; 

Anishchenko, 2006). 

A complete information about the dynamical system can be obtained by tracking the evolution of 

the trajectories in the phase space. Phase space of a dynamical system is constructed by considering 

the independent variables that describe the state of the system as the coordinates. The asymptotic 

state of the system can be identified by attractors present in the phase space of the system. An 

attractor refers to the subset of the phase space towards which the system will eventually evolve. 

An attractor can be a fixed point, a limit cycle or a chaotic one. Bifurcations can result in the 

emergence of new attractors in the phase space or the annihilation of existing attractors. 

The bifurcations that can happen in a dynamical system can be studied with the help of prototypical 

examples which are otherwise known as the normal form equations. The normal form equations 

provide a framework for identifying the bifurcations associated with a dynamical system. 

A detailed description of bifurcations observed in a bistable thermoacoustic system along with 

their normal forms is provided in the following section. 

2.1.1 Saddle node bifurcation 

The saddle node bifurcation or fold bifurcation refers to the situation where two fixed points are 

created or annihilated. As we vary the system parameter, the two fixed points move towards each 

other, collides and eventually gets annihilated. The normal form associated with saddle node 

bifurcation is  

2                                                                                                                                 (2.2)
dx

x
dt

     
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where, x is the state variable and μ is the control parameter. It can be seen from equation (2.2) that 

for μ < 0, there exist no solution and for μ > 0, we will have two solutions   and  . Out 

of the two solutions, one will be stable (  ) and the other one will be unstable (  ). Since 

the two solutions appear to arise out of nowhere in the phase space, often this bifurcation is termed 

blue sky bifurcation.  

 2.1.2 Hopf bifurcation 

If a bifurcation results in the birth of an oscillatory state or rather in the introduction of new 

frequency, the bifurcation is termed as Hopf bifurcation. Since Hopf bifurcation is associated with 

oscillatory states, the minimum phase space dimension to observe Hopf bifurcation is two. In a 

two dimensional system, we will have two eigenvalues which will determine the stability of the 

system. If two of these eigenvalues are in the left half of the complex plane, the resulting dynamical 

state of the system will be a stable fixed point. The two eigenvalues can also be complex 

conjugates. Hopf bifurcation results when a pair of eigenvalues with non-zero real parts (which 

are complex conjugates), cross the imaginary axis. As stated earlier, Hopf bifurcation results in the 

birth of a new oscillatory state.  

As described in Chapter 1, Hopf bifurcation can be supercritical or subcritical in nature. The 

normal form associated with the supercritical Hopf bifurcation is as follows 

3

3

                                                                                                                                   (2.3)

                                                

r r r

br



 

 

                                                                                    (2.4)
  

The state space variables are represented by r and θ and the frequency of the oscillatory state is 

represented by ω. For μ < 0, we will have a stable fixed point and as we increase the control 
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parameter, the fixed point at the origin becomes a very weak stable spiral at μ = 0. When μ > 0, we 

will have an unstable spiral at the origin and a stable limit cycle at r =  . We can see that the 

cubic nonlinearity in equation (2.3) is stabilizing and the supercritical Hopf bifurcation results in 

the birth of low amplitude stable limit cycle. 

If the cubic nonlinearity is destabilizing, then we will have subcritical Hopf bifurcation. The 

normal form equations associated with subcritical Hopf bifurcation are 

3 5

3

                                                                                                                        (2.5)

                                                        

r r r r

br



 
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                                                                         (2.6)
 

In the case of subcritical Hopf bifurcation, the origin remains a stable spiral for μ < 0 and there 

also exists a stable limit cycle away from the origin. The stable limit cycle and the stable fixed 

point are separated by an unstable limit cycle. As the control parameter is increased, the unstable 

limit cycle shrinks in size and finally engulfs the stable fixed point at the origin at μ = 0. The origin 

becomes unstable and the only attractor present to the system is the large amplitude limit cycle. 

Thus, when the system undergoes subcritical Hopf bifurcation, there will be sudden onset of large 

amplitude limit cycle oscillations.   

The normal form equations (2.5) and (2.6) also correspond to saddle-node bifurcation of cycles. 

The saddle-node bifurcation of cycles refers to the phenomenon where two limit cycles coalesce 

and annihilate. It should be noted that the fixed points that we will get by finding the roots of Eqn. 

(2.5) corresponds to limit cycle oscillations. A saddle-node bifurcation of fixed points of Eqn. (2.5) 

can be observed for a control parameter value of 1
4

   . For 1
4

   , there will be a stable 

spiral situated at the origin and for 1
4

    , a half-stable limit cycle is born. A stable fixed point 
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and a stable limit cycle, separated by an unstable limit cycle, coexist for 1
4

0    (Strogatz, 

2000). In a bitstable thermoacoustic system, we observe this fold bifurcation which results in the 

birth or death of a stable and an unstable limit cycle solution (Subramanian et al., 2010). The Hopf 

bifurcation and the fold bifurcation of limit cycles observed in experiments are described in 

Chapter 5.  

The bifurcations that happen in a dynamical system can be understood with help of phase portraits. 

The next section describes the technique to reconstruct the phase space from scalar time series 

obtained from experiments.  

2.2 Phase space reconstruction 

 

In order to construct the phase space and to identify the topological structures present in the phase 

space, we need a complete information about the independent state variables required to describe 

the state of the dynamical system. The information of independent state variables can be obtained 

from the governing equations of the dynamical system. However, for many physical systems such 

as a thermoacoustic system or an aero-elastic system, we will not have access to all the relevant 

dynamical variables. The time series of only one of the state variables may be available from 

experiments. Nevertheless, we can reconstruct the phase space from the time series measurements 

of a single dynamical variable using Taken’s theorem (Takens, 1981). 

The central idea behind the phase space reconstruction is to obtain sufficient number of delayed 

variables from the scalar time series data. The number of delayed variables to be obtained depends 

on the minimal embedding dimension. The single time series data is converted into d time delayed 

independent vectors. The number of independent vectors depend upon the minimal embedding 
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dimension. The time delay ̂  between the vectors and the minimal embedding dimension can be 

found by various algorithms as described in Abarbanel (1996). 

2.2.1 Optimum time delay 

There exist different techniques to calculate the optimum time delay that needed for reconstructing 

the phase space. One of the common methods employed is to calculate the first zero-crossing of 

the autocorrelation function of the obtained time series. The method employed in the current study 

to calculate the optimal time delay employs the concept of Average Mutual Information (AMI) 

between the delayed vectors rather than the autocorrelation of the time series. 

The AMI between the delayed vectors of a signal x(t) is defined by the following equation 

2
1

ˆ( ( ), ( ))
ˆ ˆ( ) ( ( ), ( )) log                                                                     (2.7)
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where, P(X) refers to the probability of the event X. 

The time series x(t) is normalized to lie between 0 and 1 to begin with and the time series data is 

sorted into different bins. The histograms on these bins are normalized and the probability 

distributions ( ( ))P x t and ˆ( ( ))P x t  are obtained. A two dimensional bin in ( )x t and ˆ( )x t  is 

normalized to obtain the joint probability distribution ˆ( ( ), ( ))P x t x t  . AMI is the measure of 

amount of information shared by two different time delayed vectors. As it can be seen from Eqn. 

(2.7), AMI is a function of the time delay ̂ . Hence, to construct independent time delayed vectors, 

the value of the time delay corresponding to the first local minimum of AMI is chosen. In other 

words, the first local minimum of AMI corresponds to the optimal time delay.  
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Figure 2.1: The variation of ˆ( )I   with ̂  for acoustic pressure time series corresponding to limit 

cycle oscillations observed in horizontal Rijke tube. The time delay corresponding to 

the first minima of AMI is considered as the optimal time delay. 

We can see from Fig 2.1 that the AMI changes with time delay and the optimal time delay *̂

corresponds to the value of time delay at the first minima of AMI. It is interesting to note that this 

value of optimal time delay is close to one fourth of the time period of acoustic pressure oscillations 

which corresponds to the phase difference between acoustic velocity and acoustic pressure for a 

standing wave with perfect reflecting boundary conditions. 

2.2.2 Minimal embedding dimension    

In order to reconstruct the phase space from the scalar measurements, we need to find the minimal 

dimensions of the phase space. The criterion for choosing the minimal embedding dimension is 

that the topological features observed in the reconstructed phase space are due to the dynamics of 

the system and not an artifact of the specific embedding dimension. The most popular algorithm 
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to calculate the minimal embedding dimension is the method of False Nearest Neighbors (FNN). 

In FNN, the number of false neighbors are calculated for each point in the phase space as a function 

of the embedding dimension. A false neighbor is defined as the one which will move away from a 

point in a phase space, once we increase the embedding dimension. So if we choose an embedding 

dimension less than the minimal embedding dimension required, then we will be observing false 

crossing of trajectories in the phase space. 

After obtaining the optimum time delay, a measure a(i, d) of the following form is constructed in 

FNN.

( , )

( , )

( 1) ( 1)
( , )                                                                                            (2.8)

( ) ( )

i n i d

i n i d

X d X d
a i d

X d X d

  



    

 where, i = 1, 2, ....., ( N  - d̂ ) and n(i, d) represents the index of the nearest neighboring point to 

Xi in phase space. The Euclidian norm is represented by  ... . 

Any two points in the d – dimensional reconstructed phase space which are close to each other 

will remain close to each other in the (d + 1) – dimensional reconstructed space, if they are true 

neighbors. Essentially the minimal embedding dimension is calculated by comparing the value of 

the measure a(i, d) with a threshold value which will be dependent on i. Cao (19970 proposed a 

new measure which is independent of I to calculate the minimal embedding dimension.                   

The measure E(d) proposed by Cao (1997) is defined as: 

*ˆ

*
1

1
( ) ( , )                                                                                                  (2.9)

ˆ

N d

i

E d a i d
N d












      

The variation of E(d) with d is calculated by introducing another quantity E1(d) such that 
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1
( 1)

( )                                                                                                                        (2.10)
( )

E d
E d

E d


      

The variation of 1( )E d  with d is calculated and the minimal embedding dimension (d0 + 1) is 

chosen when 1 0 1 0( 1) ( )E d E d  . 1( )E d  always saturates for a deterministic signal whereas for 

uncorrelated noise it never saturates. Nair et al. (2014) proposed a new measure 2( )E d  to 

distinguish deterministic signals from uncorrelated noise, where 2( )E d  is given by 

*

2 *

( 1)
( )                                                                                                                     (2.11)

( )

E d
E d

E d


     

*ˆ
* * *

*
1

1
ˆ ˆ( ) ( ) ( ( , ) )                                                           (2.12)

ˆ

N d

i

E d X i d X n i d d
N d



 






   




 

2( )E d  will always be one for an uncorrelated signal as the future values are independent of the 

past values, whereas for a deterministic signal, there must be some values of d for which the value 

of 2( )E d  will not be one. In the present study, the minimal embedding dimension is calculated by 

employing the modified FNN method as suggested by Cao (1997). 

Figure 2.2 depicts the variation of E1(d) and E2(d) with d for acoustic pressure time series 

corresponding to limit cycle oscillations observed in horizontal Rijke tube. As the measure E1(d) 

saturates at an embedding dimension of 11, the minimal embedding dimension should be chosen 

as 12.  

The reconstructed phase space of the pressure time series is shown in Fig. 2.3. The optimum time 

delay corresponding to the first minima of AMI and the minimal embedding dimension obtained 

from Cao’s method are used to reconstruct the phase space.  
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 Figure 2.2: The variation of E1(d) and E2(d) with d for acoustic pressure time series corresponding 

to limit cycle oscillations observed in horizontal Rijke tube. It can be seen that E1(d) 

saturates around d = 11. Hence, the minimal embedding dimension is taken as 12. 

 

  

Figure 2.3: The reconstructed phase portrait of the time series of acoustic pressure corresponding 

to limit cycle oscillations observed in horizontal Rijke tube. It can be seen that the 

topological structure in the phase space is an isolated closed trajectory which 

represents a limit cycle. 
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We observe from Fig. 2.3 that the attractor in the phase space is a limit cycle. So, it can be seen 

that using the technique of phase space reconstruction, the asymptotic dynamics of the 

thermoacoustic system is completely understood although we only had the time series of the 

acoustic pressure. Thus, even when we have access to only one of the dynamical variables of the 

system, the reconstructed phase space will provide the information about the asymptotic state of 

the system.  

2.3 Concluding remarks    

In this chapter, the different types of bifurcations that can be observed in prototypical 

thermoacoustic systems are discussed in detail. The associated normal form equations are also 

presented. The technique of phase space reconstruction from the time series of a single state space 

variable is described. The methods to find optimum time delay and the minimal embedding 

dimension are also presented. 
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CHAPTER 3 

EXPERIMENTAL SET-UP 

This chapter focuses on the experimental set-up employed in the current study. The 

instrumentation used to acquire data is also described in this chapter. The procedure adopted to 

perform experiments is also detailed.  

3.1 Experimental set-up 

The experimental setup used for the present study is shown in figure 2. A horizontal Rijke tube 

with an electrically heated wire mesh is used to perform the experiments. The tube is of square 

cross-section and 1 m long. The cross-sectional area of the duct is 93 x 93 mm2. A blower (1 HP, 

Continental Airflow Systems, Type-CLP-2-1-650) operated in the suction mode, is used to provide 

the mean flow. The flow rate is measured using a compact orifice mass flow meter (Rosemount 

3051 SFC). The measurement range of the flow meter is 0-5 g/s with an accuracy of ± 2.1%. A 

decoupler of dimensions 120 x 45 x 45 cm3 is located at the outlet end of the Rijke tube to reduce 

the acoustic interactions between the blower and the duct, at the same time enforcing the “open” 

end condition. A DC power supply unit (TDK-Lambda, GEN 8-400, 0-8 V, 0-400 A) provides the 

necessary electrical power to the wire mesh. The uncertainty in the heater power is 0.4 W. The 

mesh and the power supply unit are connected using copper rods and copper wires. A mesh type 

electric heater is used because it can supply high amount of electric power for a fairly long duration 

without any significant structural deformation (Matveev, 2003). The electric heater is housed in a 

ceramic material to ensure thermal and electrical insulation.  A traversing mechanism with a least 

count of 1 mm is used to change the heater location. 
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The measurement system consists of a pressure transducer (PCB103B02) connected to a PCI 6221 

data acquisition card to record the acoustic pressure and a K-type thermocouple to measure the 

steady state temperature. The sensitivity of the pressure transducer is 217.5 mv/kPa and the 

resolution is 0.2 Pa. The transducer is mounted 30 cm from the inlet of the Rijke tube and the 

thermocouple is located 35 cm from the inlet. The pressure data was acquired at a sampling 

frequency of 10 kHz for 3 seconds. The bin size for computing the FFT of the pressure time series 

signal was 0.3 Hz. Loudspeakers (Ahuja AU 60) are used to apply external noise and are located 

62.5 cm from the inlet. Gaussian white noise is generated using LabVIEW Signal Express and is 

input to a loudspeaker through an amplifier.  

 

Figure: 3.1 Schematic of the experimental setup. A blower is used to provide the mean flow and a 

flow meter is used to measure the flow rate. A DC power supply unit is used to heat 

the wire mesh. The acoustic pressure is measured using piezoelectric transducers and 

the temperature is measured with the help of K- type thermocouple. A traverse 

mechanism is used to change the location of the electrical heater.    

To ensure repeatability in ambient conditions between different experiments, a relative humidity 

level of 50 ± 10% and an ambient temperature of 19 ± 3°C were maintained at the laboratory 
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during all the experiments. To maintain the repeatability of the experiments, we maintained the 

cold decay rate value α at 15.0 ± 1 s-1 for all the experiments, thereby ensuring that the acoustic 

damping in the system remains nearly the same. 

 In order to measure the cold decay rate, the system is excited at the first eigenmode frequency of 

155 Hz for a short duration in the absence of flow and with the heater switched off. Then the 

forcing is switched off and the logarithmic decay of the instantaneous acoustic pressure amplitude 

is calculated using the Hilbert transform of the pressure signal. The detailed procedure to determine 

the cold decay rate for a thermoacoustic system can be found in Mariappan (2011). 

The influence of system parameters on the width of the bistable region is studied, by performing 

experiments where a bifurcation parameter is varied in fine steps. The bifurcation parameter is 

varied till the system attains its oscillatory state from steady state and then the bifurcation 

parameter is decreased in steps to bring the system back to steady state. When a particular 

parameter, say heater power, is chosen as the bifurcation parameter, the other parameters, say 

heater location, mass flow rate and cold decay rate are maintained constant during a single 

experiment. In the current study, the influence of heater power (K) and heater location (xf) on the 

bistable characteristics of the system are investigated (reported in Chapter 3). 

A bifurcation parameter is varied in a quasi-steady manner in each experiment and the variation 

of the acoustic pressure for each value of the system parameter is recorded. The median of the 

peak acoustic pressure P from the recorded pressure time series is calculated. A bifurcation plot 

depicting the variation of the median of peak acoustic pressure with heater power is obtained for 

each experiment. The width of the bistable zone is obtained from this bifurcation plot. Then the 
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non-dimensional width of the bistable zone χ which is defined as (μH – μf)/μH, where μH & μf  

represent the system parameter values at Hopf point and fold point respectively. 

In the set of experiments intended to study the effect of noise on the bistable characteristics of a 

horizontal Rijke tube, the heater power K is chosen as the bifurcation parameter (reported in 

Chapter 4). The non-dimensional noise intensity β was maintained constant during a specific 

experiment. The non-dimensional noise intensity β is defined as the ratio between the amplitudes 

of the applied noise and the limit cycle oscillations in the absence of noise. The procedure 

suggested by Jegadeesan (2012) is followed to determine the amplitude of the applied noise of a 

given intensity. In the experiments to determine the amplitude of the applied noise, the heater is 

located at the middle of the duct so that the system will not reach a state of limit cycle oscillations. 

The amplitude of the applied noise corresponding to a particular value of noise intensity is 

calculated by finding the median of the peak acoustic pressure measured in the presence of the 

noise of same intensity. Experiments are performed for different values of non-dimensional noise 

intensity, while keeping the mass flow rate constant. From these experiments, the variation of non-

dimensional width of the bistable zone with non-dimensional noise intensity is obtained.  

The experiments where we studied the effect of heater power and heater location on bistable 

characteristics are performed for eight different mass flow rates (ṁ) namely 1.25 g/s, 1.41 g/s, 1.56 

g/s, 1.72 g/s, 1.88 g/s, 2.03 g/s, 2.19 g/s and 2.34 g/s. The set of experiments, where we studied 

the effect of noise intensity, is performed for four different mass flow rates 2.19 g/s, 2.34 g/s, 2.50 

g/s and 2.97 g/s. 

 

  

 



CHAPTER 4 

THEORETICAL MODEL 

This chapter focuses on the theoretical model used to investigate the effect of noise and system 

parameters on the bistable characteristics of a thermoacoustic system. The derivation of the 

theoretical model from the conservation equations are also described in this chapter along with the 

techniques employed for numerical integration. 

In the current study, we modified the theoritical model proposed by Balasubramanian & Sujith 

(2008) to study the effect of external noise and system parameters on the bistable characteristics 

of a horizontal Rijke tube. The Balasubramanian- Sujith oscillator models the thermoacoustic 

oscillations in a horizontal duct open at both ends with a heated wire inside. The variation of 

temperature along the duct is neglected. The Mach number of the flow is assumed to be negligible 

which is relevant even for industrial combustors where the speed of sound will be much higher 

than the mean velocity of the flow.  

Based on the low Mach number approximation, the governing equations are linearized and the 

linearized Partial Differential Equations (PDEs) are further converted to Ordinary Differential 

Equations (ODEs).  The resulting ODEs are perturbed with Gaussian white noise to include the 

effect of fluctuations. The Stochastic Differential Equations (SDEs) are then numerically 

integrated. 
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4.1 Conservation equations of momentum and energy 

The conservation equations of momentum and energy are written for a horizontal duct with a 

concentrated heat source. The variation of temperature along the length of the duct is considered 

to be negligible. The heat source is considered as a point source as the thickness of the heater is 

negligible compared to the characteristic length scales associated with acoustics. 

 

 

 

  

Figure 4.1: Schematic of the Rijke tube setup considered for numerical modelling. The thickness 

of the heater wire is negligible compared to the acoustic length scale L.  

The conservation equations for the momentum and energy in one-dimension for the horizontal 

duct (Kundu & Cohen, 2004) shown in Fig. 4.1 will be 

0                                                                                                               (4.1)
u u p

u
t x x

 
  

  
  

 

( 1)                                                                                                      (4.2)
p p u

u p Q
t x x

 
  

   
  

The ratio of specific heats is represented by  . The quantities with tilde are dimensional. We 

decompose the pressure ( p ), density (  ), velocity ( u ) and the heat release rate ( Q ) into mean 

and fluctuating quantities. For example, the pressure is decomposed as p p p  .  

L 
xf 

Heat source 

Flow direction 
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 By neglecting the effect of mean flow (i.e; by employing zero Mach number approximation) 

(Nicoud & Wieczorek, 2009), we get the following linearized equations   

0                                                                                                                           (4.3)
u p

t x


  
 

 
 

( 1)                                                                                                               (4.4)
p u

p Q
t x

 
  

  
 

 

Mean density and mean pressure are represented by   and p  respectively. The acoustic velocity 

and the acoustic pressure are represented by u´ and p´ respectively. The length along the axial 

direction is represented by x  and the time is represented by t . and Q  represents the unsteady 

heat release rate from the heat source. 

In this theoritical model, modified King’s law suggested by Heckl (1990) is used to model the 

unsteady heat release rate from the heater wire. The heat release rate  Q  is represented by the 

following empirical model 

0 0( )  ( )                                                                                 (4.5)
3 3

f f

u u
Q k u t x x 

 
      

  

 

where 

 2
                                                                                                   (4.6)
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
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Lw, dw and Tw represent the length, diameter and the temperature of the heater wire. The mean 

temperature and the mean velocity are represented byT and 0u respectively. S represents the cross 

sectional area of the duct. The heat conductivity and specific heat at constant volume of the 

medium in the duct are represented by λ and VC . The time delay between heat release rate 

fluctuations and acoustic velocity fluctuations is represented by  . The term ( )fu t    which 

represents the acoustic velocity at the heater location at a time ( )t  , is inside the square root in 

the heat release rate term. Thus, we have a square root nonlinearity present in the heat release rate 

term. 

 4.2 Non-dimensional equations 

The following scales are used for converting the dimensional Eqns (4.3) and (4.4) to non-

dimensional equations   

0

0 00

,   ,   ,  ,                                                                            (4.7)
L

c

ux t u p
x t u p M

L u p c

 
       

The speed of sound at mean temperature T  is represented by 0c . The non-dimensional length and 

time scales are represented by x and t. The non-dimensional acoustic pressure and the non-

dimensional acoustic velocity are represented by u´ and p´ respectively. Mach number is 

represented by M . By applying the scaling described in Eqn. (4.7) in Eqn. (4.5), the following 

non-dimensional partial differential equations are obtained (Balasubramanian & Sujith, 2008). 
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0                                                                                                                    (4.8)
u p

M
t x
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  
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 

1 1
( )  ( )                                                              (4.9)
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f f
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t x
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   
      
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The above set of PDEs (Eqns (4.8) and (4.9)) are reduced to ODEs by expanding the acoustic 

velocity and acoustic pressure in terms of basis functions using Galerkin technique (Lores & Zinn, 

1973). The natural acoustic modes of the duct in the absence of heater are chosen as basis 

functions. The acoustic velocity and acoustic pressure can be expressed in terms of duct modes as 

(Balasubramanian & Sujith, 2008) 

1

1

cos                                                                                                                     (4.10)      

 sin                                   
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

 
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

                                                                           (4.11)

Substituting Eqns. (4.8) and (4.9) into Eqns. (4.6) and (4.7) and projecting along the basis 

functions, the following ODE’s are obtained. 

2

                                                                                                                                   (4.12)
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                                            (4.13)fx

Here,   and   correspond to the time-varying coefficients of the acoustic velocity and the acoustic 

pressure in the Galerkin expansion. ωj refers to the non-dimensional angular frequency of the jth 

acoustic mode of a duct with open-open boundary condition. The details of non-dimensional 
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equations and the details of the Galerkin technique can be found in Balasubramanian & Sujith 

(2008). 

To highlight the nonlinearity in the heat release rate, we expand the term
1

( )
3

fu t    in Eqn. 

(4.13) for small 
fu  ( 1 3fu  ) as 

 
1

2

1
2

1 1
( ) 1 3 ( )                                                                                       (4.14)

3 3
f fu t u t      

 

The second term on the right hand side of Eqn. (4.14) when expanded using binomial expansion 

gives 

 
1

2 2 33 3 3
2 8 16

1 3 ( ) 1 ( ) ( ( )) ( ( )) ....                                    (4.15)f f f fu t u t u t u t                   

Now the non-dimensional heat release rate can be written in terms of acoustic velocity at the heater 

location as 

2 33 3 3
2 8 16

( ) ( ( )) ( ( )) ....                                                         (4.16)
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From Eqn. (4.16) it is clear that the non-dimensional heat release rate Q  is nonlinear in acoustic 

velocity at the heater location ( )fu t   . When we substitute Eqn. (4.16) in Eqn. (4.13), we get 
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 where,
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1

( ) ( )cos                                                                                                  (4.18)
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Here, N represents the number of Galerkin modes considered. Thus, the evolution of the acoustic 

pressure is nonlinearly coupled with the evolution of the acoustic velocity at the heater. This 

nonlinear coupling makes the system exhibit rich dynamical behavior such as limit cycle 

oscillations, quasi-periodic oscillations and chaotic fluctuations (Subramanian et al., 2010; 

Juniper, 2011; Waugh et al., 2011). We have performed the binomial expansion to explicitly 

highlight the nonlinear terms. However, in the calculations, we have used the square root term as 

it is, without any simplifications.   

The damping model used here is the same as that used by Matveev (2003), where 

1
1 2
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1
                (4.19)                                                                  (4.20)
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Here, 1c  and 2c  are constants that determine the amount of damping. For all the simulations 

performed in the present study, the value of xf is chosen as 0.25 and the values of damping 

coefficients 1c and 2c are 0.1 and 0.06 respectively. The value of the damping coefficient is selected 

such that it matches with the cold decay rate calculated from experiments.  

The Balasubramanian-Sujith oscillator described by Eqns. (4.12) and (4.13) will show limit cycle 

oscillations when the phase difference between acoustic fluctuations and heat release rate 

fluctuations evolves to a value where the acoustic driving balances the damping (Balasubramanian 

& Sujith 2008). This will cause the saturation of acoustic velocity and acoustic pressure. Past 

studies have shown that this model has captured many of the dynamical features observed in 

experiments such as limit cycle oscillations, triggering and subcritical Hopf bifurcation 
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(Balasubramanian & Sujith, 2008; Subramanian et al., 2010; Juniper, 2011). A good qualitative 

agreement exists between the results of the model and that obtained from experiments.    

Waugh et al. (2011) and Waugh & Juniper (2011) extended the model proposed by 

Balasubramanian & Sujith (2008) to include the effect of noise. The numerical model that we use 

in the current study is similar to the one used by Waugh, Geuß & Juniper (2011) and Waugh & 

Juniper (2011). However, our model differs from the numerical model used by them in the 

numerical method used and also the manner in which noise is generated. Waugh & Juniper (2011) 

and Waugh et al. (2011) used colored noise and white noise to perturb the system and they 

considered the effect of both additive and multiplicative noise. They used a deterministic Runge-

Kutta solver to integrate the deterministic system in time and at the end of each iteration, they 

added the noise increments generated by a general noise generating process. The type of white 

noise used by them had an amplitude spectrum of constant value of amplitude up to the frequency 

of the highest Galerkin mode, and after that the spectral content is zero (Waugh, 2012). 

4.3 Stochastic delay differential equations 

 In the current analysis, the system of equations are treated as a system of stochastic delay 

differential equations (SDDE). The stochastic Runge-Kutta method is employed to integrate the 

SDDEs in time. Stochastic Runge-Kutta method uses the stochastic Taylor expansion of a function 

(Burrage, 1999; Kurtz, 2007; Picchini, 2007; Richardson, 2009). A step-by-step procedure of 

stochastic Runge-Kutta method as applied to a general stochastic differential equation is presented 

in the appendix. Additive Gaussian white noise is used to perturb the system. The increments in 

the white noise are generated from a Wiener process (Richardson, 2009). The white noise 

generated in our study has an amplitude spectrum of constant value of amplitude up to a non-
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dimensional frequency of 50 which is higher than the dominant frequency by an order of 

magnitude. When we include additive Gaussian white noise in Eqn. (4.13), we have 

                                                                                                                                   (4.19)
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where σ represents the strength of the additive noise and ξ(t) is the Gaussian white noise with zero 

mean and a variance proportional to square root of Δt, where Δt is the time step used in numerical 

integration. Eqns. (4.19) and (4.20) are integrated using stochastic Runge-Kutta method of 4th 

order to obtain the acoustic pressure and the acoustic velocity for a set of system parameters.  

We find from the earlier numerical studies that including 20 modes (10 modes of   and 10 modes 

of  ) is adequate to capture the evolution of acoustic pressure and any further addition of modes 

will result only in marginal improvements (Subramanian et al., 2010). We obtain the bifurcation 

plot for different values of the non-dimensional heater power while keeping the non-dimensional 

noise intensity β, a constant. Following this procedure, the bifurcation plots are obtained for 

different values of β.  

We calculate the non-dimensional width of the bistable zone χ from each of the bifurcation plots 

and estimate the variation of the width of the non-dimensional bistable zone with non-dimensional 

noise intensity. Earlier study on the deterministic system shows that the time lag τ influences the 

width of the bistable zone in a significant manner (Subramanian et al., 2010). Hence the variation 

of non-dimensional width of the bistable zone with the non-dimensional intensity of the additive 

noise is calculated for different values of time lag. 
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 In spite of its simplicity, the numerical model employed here retains the essential features of a 

thermoacoustic system such as the nonlinearity of the heat release rate and the delay between the 

acoustic perturbations and the heat release rate fluctuations. Nevertheless, there are differences 

between the model and the experiments in features such as geometry of the heating element and 

the amount of mean flow. A mesh type heater is used in the experiments whereas heat transfer 

from a single cylindrical wire is considered in the numerical model. Further, the model does not 

account for radiative heat transfer. Due to the differences that exist between the model and 

experiments, a quantitative match in results is not expected.  

 

    

 



CHAPTER 5 

INFLUENCE OF SYSTEM PARAMETERS ON THE BISTABLE 

CHARACTERISTICS OF A HORIZONTAL RIJKE TUBE 

The influence of system parameters such as heater power, heater location and mass flow rate on 

the bistable characteristics of a horizontal Rijke tube is presented in this chapter. We performed 

experiments by varying the bifurcation parameter while keeping the mass flow rate constant. 

Heater power and heater location are chosen as bifurcation parameters. From the time series of 

acoustic pressure acquired from experiments, bifurcation plots are obtained. Using the bifurcation 

plots, the influence of system parameters on the width of the bistable zone is investigated.    

5.1 Effect of heater power on bistable characteristics 

Here the effect of changing the heater power on the system dynamics is presented.  Experiments 

were performed by slowly varying the power supplied to the electrical heater. The system was 

preheated for 20 minutes and the value of acoustic pressure amplitude (P) and the value of heater 

power (K) were noted down after preheating. The preheating was done in order to lessen the 

variations in temperature as the heater power is increased (Matveev, 2003). Thereafter, the heater 

power was increased in a quasi-steady manner. Input voltage to the electrical heater was increased 

in steps of 0.01 V which corresponds to an increase in electrical power of 2-3 W. If the heater 

power is increased rapidly, it can cause nonlinear triggering of instability (Matveev, 2003). To 

avoid this nonlinear triggering of instabilities, a settling time of 2 minutes is imposed between the 

power increments (Matveev, 2003; Mariappan, 2011). 
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During this time, the system achieves a stationary state which is confirmed by the steady 

temperature noted by the thermocouple. Power increment used in the current investigation is 2-3 

W, which is comparable to the power increment used by Matveev (2003). However when the 

heater power was varied in a fine manner, we increment the power in steps of 0.5 W. Figure 3.1 

shows the bifurcation diagram obtained by varying the heater power (K). The median value of the 

peak acoustic pressure (P) is plotted against the heater power (K). During the forward path; i.e., 

while K is increased, the system is stable till the point C which corresponds to a heater power of 

337 W.  

Further increase in heater power takes the system to a stable limit cycle (point D). From D to E, 

the amplitude of the limit cycle oscillations increases with increase in heater power. Once the 

system has reached point E, the heater power is decreased in steps of 2-3 W. The asymptotic state 

achieved by the system during the decrease of heater power is termed as the return path. The 

system continues in the state of stable limit cycle oscillations up to point F during the return path. 

When the heater power is reduced below 308 W, the system reverts back to the non-oscillatory 

state. In the forward path, the system is globally stable for low values of K (line AB). Region BC 

is termed as bistable where the system can be triggered to instability. Beyond the point C, the 

system is globally unstable. The difference observed between the forward path (ABCDE) and the 

return path (EDFBA) establishes the hysteresis zone. We can observe from Fig 5.1 that the system 

has two stable states in the region BC. One of the stable state happens to be the non-oscillatory 

state and the other one pertains to the state of stable limit cycle oscillations. It is to be noted that 

the system can be triggered to the state of stable limit cycle oscillations even when the system is 

linearly stable; i.e. even when we are in the forward path (Mariappan, 2011). Hence the system is 

said to be bistable in the regime BC. In general, the presence of bistability need not necessarily 
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ensure the presence of hysteresis and vice versa (Guidi & Goldbeter, 1997). However, in the Rijke 

tube system analysed in this thesis, we observe both bistability and hysteresis.  

 
Figure 5.1: Experimental bifurcation diagram displaying the values of acoustic pressure P 

measured at x = 30 cm for a quasi-steady variation in the power supplied to heater K. 

The system undergoes a subcritical Hopf bifurcation at K =337 W and a fold 

bifurcation at K = 307 W. BCDF represents the bistable region where the system is in 

a bistable state. The heater is located at xf = L/4. Mass flow rate ṁ = 2.34 g/s.                    

▲ - Increasing K, ▽-Decreasing K.     

The asymptotic state of the system can be understood by reconstructing the phase space from the 

acquired time series. The phase space of a dynamical system is the one which represents all 

possible states of the system. In general, the phase space will be an ‘n’ dimensional vector space 

constructed using ‘n’ state variables. The state variables can be identified from the governing 

equations of the system. If the governing equations are not known, the phase space can be 

constructed using indirect methods (Abarbanel & Gollub, 1996). One of them happens to be the 

method of using time-delayed vectors. These time-delayed vectors are constructed using Takens’ 

embedding theorem, from the time series data of one of the physical variables (Takens, 1980). 

Time delayed vectors are constructed by calculating the optimum time delay. The dimension of 
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the reconstructed phase space will be determined by knowing the embedding dimension. The 

embedding dimension in the present case is determined by the method of False Nearest Neighbours 

(FNN). The technique of reconstruction of phase space from experimentally obtained time series 

data is explained by Kabiraj et al. (2012) and Nair et al. (2013) in the context of thermoacoustic 

instabilities. 

The amplitude spectra of the pressure time series signal along with corresponding phase portrait 

is shown in Fig. 5.2 for a heater power value of 339 W. A prominent frequency of 168.8 Hz can 

be seen in the amplitude spectra and phase portrait shows a closed orbit which happens to be a 

limit cycle (Fig. 5.2b). It is worth mentioning that the prominent frequency 168.8 Hz in the 

amplitude spectra is nearly equal to the first acoustic mode of a half wave length resonator. 

Presence of the bistable zone (Fig. 5.1) and the limit cycle in the reconstructed phase portrait (Fig. 

5.2b) confirm that the bifurcation is subcritical Hopf bifurcation. In order to understand the effect 

of mass flow rate on the dynamics of the system, the experiment is performed for different mass 

flow rates. When the bifurcation plots for low and high mass flow rates are compared, the bistable 

zone is clearly visible in the case of high mass flow rates (Fig. 5.3c) whereas it becomes 

unobservable for low mass flow rates (Fig. 5.3b).  

For low mass flow rates, the forward and reverse paths appear to merge together (Fig. 5.3a) and 

the bistable zone is not observable as in the case of high mass flow rates (Fig. 5.3c). Even though 

the bistable zone is not observable, a discrete jump in acoustic pressure can be seen during the 

transition for low mass flow rate (Fig. 5.3a). The sudden jump observed in the acoustic pressure 

confirms that the transition is subcritical even for low mass flow rates (Strogatz 2000). Since 

subcritical transitions are characterized by the presence of a bistable zone, experiments were 
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performed with fine variation in control parameter, to detect the bistable zone present near the 

transition point. The heater power is varied in a quasi-steady manner with a step size of 0.5 W. 

The bifurcation diagram with fine variation in heater power is depicted in Fig. 5.3b. We can 

observe from Fig. 5.3b that the bistable zone is clearly observable in the case of finer variation in 

control parameter.  

 
 

Figure 5.2: (a) The amplitude spectrum of the pressure time series showing distinct peaks 

indicating limit cycle oscillations. The bin size used is 0.3 Hz (b) Phase portrait 

reconstructed from pressure time series depicting an isolated closed orbit in the 

phase space. Heater power K = 339 W. The heater is located at xf = L/4. Mass 

flow rate ṁ = 2.34 g/s. 

Similar set of experiments were performed for mass flow rates 1.41 g/s, 1.56 g/s and 1.72 g/s. For 

all these four mass flow rates, i.e., for 1.25 g/s, 1.41 g/s, 1.56 g/s and 1.72 g/s the bistable zone is 

not detectable when the heater power is varied in a coarse manner with a step size of 2 W. However 

there exists a definite jump in the value of acoustic pressure near the transition. When the step size 

is reduced to 0.5W the bistable zone became clearly observable for all the four mass flow rates.  
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Figure 5.3: (a) Experimental bifurcation plot for mass flow rate ṁ = 1.25 g/s. The heater power is 

varied with a step size of 2 W. The bistable zone is not observable in this case, 

however there is a sudden jump in the value of acoustic pressure during the transition 

(b) Experimental bifurcation plot for mass flow rate ṁ =1.25 g/s. The heater power 

is varied with step size of 0.5 W. The bistable zone is observable with this fine 

variation in the control parameter. (c) Experimental bifurcation plot for mass flow 

rate ṁ = 2.34 g/s. The heater power is varied with a step size of 2 W. The bistable 

region is clearly observable. The heater is located at xf = L/4. ▲-Increasing K,         

▽-Decreasing K 
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5.2 Effect of heater location on bistable characteristics  

The effect of heater location on the bistable characteristics of a horizontal Rijke tube is detailed 

here. Experiments were conducted by varying the heater location in a quasi-steady manner. The 

system was preheated for 20 minutes to reduce the variation in temperature along the duct. The 

heater was located at the inlet end before the start of the experiment. The value of the acoustic 

pressure amplitude (P) and the value of heater location (xf) were recorded after preheating. The 

heater location was changed in steps of 1 cm and a settling time of one minute is chosen. The 

heater location is measured from the inlet. When the heater is located at the inlet end, xf is 

considered as zero. The variation in the median value of the peak acoustic pressure with variation 

in heater location is shown in Fig. 5.4. 

During the forward path, when xf is increased, the system is stable until xf becomes 19 cm. The 

system undergoes a Hopf bifurcation at xf = 19 cm. Thereafter, the amplitude of pressure 

oscillations increases and reaches a maximum at xf  = 33 cm. 

Further increase in xf causes a decrease in the pressure amplitude and the system goes back abruptly 

to the steady state when xf  = 36 cm. While in the reverse path, when xf is decreased, the system 

remains stable till  xf  = 29 cm. When the heater is located at 29 cm away from the inlet, the system 

undergoes a Hopf bifurcation and reaches a state of stable limit cycle oscillations. As the heater is 

moved towards the inlet, xf is decreased; the amplitude of oscillations decreases and the system 

reverts to the steady state when the heater is located at 18 cm away from the inlet. A clear bistable 

zone is present near the second Hopf point (29 cm). Although the bistable zone is not observable 

near the first Hopf point (19 cm) for coarse variation in heater location, a definite jump in the value 

of acoustic pressure near the transition point can be observed. However with fine variation in heater 
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location, the bistable zone near the first Hopf point also becomes detectable as shown in the inset 

of Fig. 5.4. 

 
Figure 5.4: Experimental bifurcation diagram displaying the values of acoustic pressure at x = 30 

cm for a quasi-steady variation in the heater location xf. Subcritical Hopf bifurcation 

happens at xf =19 cm during the forward path and at xf =29 cm during the reverse path. 

Bistable zone near the second Hopf point is observable with coarse variation in heater 

location and the bistable zone near the first Hopf point is shown only with fine variation 

in heater location (see inset). The heater power K = 423 W. Mass flow rate ṁ = 2.34 

g/s. ▲- Increasing xf , ▽- Decreasing xf 

Figure 5.5 shows the Fourier transform of the pressure signal and phase portrait of the system 

when the heater is located at 19 cm; i.e., at the first Hopf point. The FFT shows a prominent 

frequency of 169 Hz and the phase portrait is a limit cycle. Just as in the case of heater power, here 

also the prominent frequency corresponds to the first acoustic mode of a duct with open-open 

boundary condition.  From the presence of a prominent frequency in FFT and the appearance of 

limit cycle in the phase portrait, we can conclude that the bifurcation occurring at xf = 19 cm is 

Hopf bifurcation. 
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Figure 5.5: (a) The amplitude spectrum of the pressure time series showing distinct peaks 

indicating limit cycle oscillations. The bin size used is 0.3 Hz    (b) Phase portrait 

reconstructed from pressure time series depicting an isolated closed orbit in the 

phase space.  Heater is located at xf  = 19 cm. Heater power K = 423 W. Mass 

flow rate ṁ = 2.34 g/s. 

During the return path, the FFT shows a prominent frequency and the phase portrait is a limit cycle 

when the heater is located at 29 cm (Fig. 5.6). The presence of a prominent frequency along with 

the presence of a limit cycle indicates that the system undergoes Hopf bifurcation during the return 

path. The presence of the bistable zone along with the presence of discrete jump in the value of 

acoustic pressure near the transition point indicates that the transition is subcritical for both first 

and second Hopf points (19 cm and 29 cm). The presence of two Hopf points and the subcritical 

nature of transition observed at both of them is consistent with the results reported by Subramanian 

et al. (2010).   
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Figure 5.6: (a) The amplitude spectrum of the pressure time series showing distinct peaks 

indicating limit cycle oscillations. The bin size used is 0.3 Hz    (b) Phase portrait 

reconstructed from pressure time series depicting an isolated closed orbit in the 

phase space. Heater is located at xf = 29 cm. Heater power K = 423 W. Mass flow 

rate ṁ = 2.34 g/s. 

The experiments where we study the effect of heater location were performed for different values 

of mass flow rate. A comparison between the bifurcation diagrams obtained for 1.25 g/s (Fig. 5.7a) 

and for 2.34 g/s (Fig. 5.7b) is shown in Fig. 5.7.  

When the mass flow rate is decreased, the bistable zone near the second Hopf point becomes 

undetectable and the forward and reverse paths appear to merge together. Even when the bistable 

zone becomes undetectable, a definite jump in the amplitude of acoustic pressure is seen during 

transition and the observed jump is sufficiently above the noise floor. This jump observed in the 

amplitude of acoustic pressure confirms that the transition is subcritical (Strogatz, 2000). The 

variation in the control parameter, heater location, is made finer to detect the bistable zone as in 

the case of heater power. As the heater location is varied in a finer manner, with a step size of 1 

mm, near the Hopf point, the bistable zone becomes observable for the case of 1.25 g/s. 
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Figure 5.7: Experimental bifurcation diagrams displaying the variation of acoustic pressure P at     

x = 30 cm with a quasi-steady variation of heater location xf (a) for mass flow rate              

ṁ = 1.25 g/s and (b) for mass flow rate ṁ = 2.34 g/s. The bistable zone is not 

observable for ṁ = 1.25 g/s whereas the bistable zone is observable for ṁ = 2.34 g/s. 

The heater power K = 423 W. ▲- Increasing xf ; ▽-Decreasing xf . 

The bifurcation diagrams with fine variation in control parameter are shown in Fig. 5.8. It is 

observed that the bistable zone is detectable for a fine variation of the control parameter. Since the 

width of the bistable zone is much smaller than the overall range in which the control parameter is 

varied, only the portion of the bistable zone near the Hopf point is shown in Fig. 5.8. Even for a 

low mass flow rate of 1.25 g/s, we can conclude that the transition to instability is clearly 

subcritical when the heater location is chosen as the control parameter. The subcritical nature of 

the transition to instability is confirmed by the presence of bistable zone and a discrete jump in the 

values of acoustic pressure during transition (Fig. 5.8 a & b) (Strogatz, 2000). 
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Figure 5.8:  Experimental bifurcation diagram displaying the values of acoustic pressure at x = 30 

cm versus the location of the heater (a) near the first Hopf point and (b) near the second 

Hopf point. Heater location is varied in fine steps of 1 mm. With this fine variation in 

heater location, the bistable zones at first and second Hopf points become observable. 

The heater power K = 423 W. Mass flow rate ṁ = 1.25 g/s. ▲- Increasing xf ;                 

▽- Decreasing xf 

The experiment is performed for different mass flow rates by varying the heater location in a fine 

manner. We find that a bistable zone of definite width exists even for very low mass flow rates. 

However, for the case of low mass flow rates, the bistable zone is often perceptible only when the 

parameter variation is made finer. 

The experiment was performed for a mass flow rate of 2.97 g/s to understand the system dynamics 

at a higher mass flow rate. The power supplied to the heater in the earlier experiments was found 

to be insufficient to make the system unstable at a mass flow rate of 2.97 g/s. So the heater power 

is increased from its previous value of 423 W to 482 W. Since the heater power was changed, the 

results for the mass flow rate of 2.97 g/s are presented separately. It can be observed that there are 
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two distinct regimes of heater location for which oscillations are present (Regions 1&2 in Fig. 5.9). 

The absence of oscillations near the open end is due to the fact that the acoustic pressure becomes 

zero at the open end. Since the acoustic velocity becomes zero at L/2, thermoacoustic instability 

does not occur as the heater is moved near this point. For the heater power value (482 W) used in 

the present study, instability did not occur when the heater was located beyond L/2.When the heater 

is located at 8 cm from the inlet, the system undergoes a subcritical Hopf bifurcation. The 

subcritical nature of transition can be confirmed by the discrete jump in the value of acoustic 

pressure when xf  is 8 cm (Region 1 in Fig. 5.9).  

 
Figure 5.9: Experimental bifurcation diagram displaying the variation of acoustic pressure P at       

x = 30 cm for a quasi steady variation in the heater location xf for a mass flow rate of 

ṁ = 2.97 g/s. Two distinct regions of instability can be seen. The bifurcations that 

happen in both region-1 and region-2 are subcritical Hopf bifurcations confirmed by 

the presence of bistable zones. The heater power K = 482 W. ▲-Increasing xf ;              

▽- Decreasing xf  

Figure 5.10 shows the Fourier transform of pressure time series and the corresponding 

reconstructed phase portrait when the heater is located at 8 cm away from the inlet. The presence 

of a distinct frequency of 352.8 Hz which is approximately equal to the frequency of the second 
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acoustic mode of a half wavelength resonator  (Fig. 5.10a) and the presence of a limit cycle in the 

reconstructed phase portrait (Fig. 5.10b) confirm that the system undergoes a subcritical Hopf 

bifurcation. 

 
 

Figure 5.10: (a) The amplitude spectrum of the pressure time series showing distinct peak 

indicating limit cycle oscillations. The bin size used is 0.3 Hz (b) Phase portrait 

reconstructed from pressure time series depicting an isolated closed orbit in the 

phase space. Heater is located at xf = 8 cm. Heater power K = 482 W. Mass flow 

rate ṁ = 2.97 g/s. 

Figure 5.11 depicts the local maxima of the pressure time series with heater location, for forward 

path (Fig. 5.11a) and for reverse path (Fig. 5.11b). It can be observed that the local maxima has a 

single value till xf  = 9 cm during the forward path and till xf = 8.5 cm during the reverse path. After 

that two branches are born. The presence of two distinct branches is a characteristic feature of 

period-2 oscillations (Strogatz, 2000). These two branches represent the two distinct values of 

local maxima of pressure time series. Before the onset of period-2 oscillations, the acoustic 

pressure has single local maxima. Once the period-2 oscillations set in, the local maxima of 

pressure time series has 2 distinct values. It should be observed that till xf = 9 cm in the forward 

path and till xf = 8.5 cm during the reverse path, the second mode alone is linearly unstable in 

Region-1. Whereas after the heater locations 9 cm and 8.5 cm in the forward and reverse paths 
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respectively, first mode also becomes linearly unstable which gives rise to the occurrence of 

period-2 oscillations. Thus Region-1 in Fig.5.9 has two sub-regions in it, in one of which the 

second mode is unstable. This sub-region where the second mode is unstable extends up to                 

xf = 9 cm in the forward path and till xf = 8.5 cm during the reverse path. In the second sub-region 

(for xf values from 9.5 cm to 11.5 cm in the forward path and for xf values from 8.5 cm to 11.5 cm 

in the reverse path), the system remains in a state of period-2 oscillations.  

 

Figure 5.11: Variation of peak pressure P at x = 30 cm for a quasi steady variation of the heater 

location xf  (a) during the forward path (b) during the return path showing the presence 

of period-2 oscillations for a mass flow rate ṁ = 2.97 g/s. K = 482 W. ▲-Increasing 

xf. ▽- Decreasing xf  

The presence of period-2 orbit can be clearly seen in Figure 5.12. A new frequency of the 

oscillations of value 176.4 Hz which is quite close to the frequency of first acoustic mode gets 

introduced as the heater is moved from 9.5 cm to 10 cm (Fig. 5.12a). The value of the new 

frequency happens to be exactly half of the existing one. This marks the onset of period-2 
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oscillations. The phase portrait pertinent to the aforementioned heater location represents a double 

loop (Fig. 5.12b).  

The presence of a period-2 orbit is in agreement with the observations made by Subramanian et 

al. (2010); they reported the presence of a period-2 orbit for a non-dimensional heater location of 

0.1. The length of the Rijke tube used in the present study is 1 m, thus the non-dimensional heater 

location at which period-2 orbit is found happens to be 0.095. This is quite close with the value 

reported by Subramanian et al. (2010).  

 

 

Figure 5.12: (a) The amplitude spectrum of the pressure time series showing distinct peaks at f and 

f/2, where f is 352.8 Hz, indicating period-2 oscillations. The bin size used is 0.3 

Hz (b) Phase portrait reconstructed from pressure time series depicting a double 

loop in the phase space.  Heater is located at xf = 10 cm. Heater power K = 482W. 

Mass flow rate ṁ = 2.97 g/s. 

5.3 Variation of the width of the bistable zone with Strouhal number 

 
In this section, the variation in the width of the bistable zone with Strouhal number is discussed, 

when any of the control parameter, say heater power or heater location, is changed continuously 
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while the other parameter is maintained constant. The variation of non-dimensional width of the 

bistable zone with Strouhal number is shown in Fig. 5.13. Non-dimensional width of the bistable 

zone and Strouhal number are calculated as follows  

Non-dimensional width of the bistable zone                         = χ = | µH - µf| / µH                       (5.1) 

Strouhal number = {Flow time scale/ Acoustic time scale} = St                                               (5.2)   

Flow time scale                                                                     = dw ρ A / ṁ                                   (5.3) 

Acoustic time scale                                                               = 2L / c0                                            (5.4)  

µH is the parameter value at the Hopf point and µf  is the parameter value at the fold point. Speed 

of sound at ambient temperature is represented by c0 and dw   represents the diameter of the heater 

wire. Mean density is represented by ρ, A represents the area of the duct and the length of the duct 

is L.  

Flow time scale is the time scale dictated by the mean flow velocity and the diameter of the heater 

wire. The significance of this flow time scale can be understood by the fact that the dynamics of 

the Rijke tube is influenced by both the mean flow velocity and the diameter of the heater wire. 

It is interesting to note that the variation of the non-dimensional width of the bistable zone as a 

function of Strouhal number is nearly identical for both heater power and heater location. The 

width of the bistable zone decreases with increase in Strouhal number for both heater power and 

for heater location. Nevertheless, even for high values of Strouhal number, there exists a definite 

bistable zone which indicates that the transition to instability is subcritical in nature (Fig.5.13a) for 

the range of parameters covered in this study. The uncertainty in non-dimensional width of the 

bistable zone for heater power and heater location happens to be 0.003 and 0.004 respectively. The 

minimum non-dimensional width of the bistable zone reported is 0.006 in the case of heater power 
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and 0.016 in the case of heater location; these minimum values are well above the uncertainties 

involved in the measurements.  

Figure 5.13b shows the variation of non-dimensional width of the bistable zone with Strouhal 

number in a log-log scale. It can be seen that there is a linear relation between non-dimensional 

width of the bistable zone and Strouhal number up to a Strouhal number value of 0.33. This is 

suggestive of a power law dependence of width of the bistable zone on Strouhal number in the 

range of Strouhal numbers from 0.24 to 0.33. A vertical dashed line marks the end of the Strouhal 

number regime where power law dependence of width of the bistable zone is present. 

 
 

Figure: 5.13  Variation of non-dimensional width of the bistable zone χ with Strouhal number St 

shown in (a) Linear scale and in (b) Log-Log scale. It can be seen that the non-

dimensional widths of the bistable zones are same for heater power and heater 

location for a range of Strouhal numbers and there exists a power law relation.           

■-Heater power, ○-Heater location.  
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5.4 Concluding remarks 

The heater power and the heater location were varied systematically, one at a time, in the present 

study. It is found that the width of the bistable zone decreases as the mass flow rate is decreased. 

The presence of the bistable zone along with a finite jump in the acoustic pressure near the 

transition point indicates that, irrespective of the value of mass flow rate, the transition is 

subcritical in all the experiments we performed. For low mass flow rates, although the bistable 

zone was observed only when the control parameter was varied in a fine manner a finite jump in 

acoustic pressure near the transition point is always present. Moreover a power law relation is 

established between non-dimensional width of the bistable zone and Strouhal number. It is 

extremely important to ensure that the variation in the parameter is fine enough before a bifurcation 

can be attributed as supercritical. However, the current results do not preclude the possibility of 

observing supercritical bifurcation in a horizontal Rijke tube.  

We find that the non-dimensional widths of the bistable zone in the case of heater power and heater 

location are the same for a range of Strouhal numbers. This equivalence suggests a universal 

bifurcation behaviour which needs to be investigated in detail. When heater location was chosen 

as the control parameter, period-2 oscillations were observed for some specific values of heater 

power and mass flow rate. The presence of period-2 oscillations is suggestive of a period doubling 

route to chaos, however detailed experimental studies need to be performed in order to ensure the 

same. In summary, this work emphasises the need to thoroughly investigate the presence of 

bistable region before pronouncing a bifurcation as supercritical.    
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CHAPTER 6 

EFFECT OF NOISE ON THE BISTABLE CHARACTERISTICS OF A 

HORIZONTAL RIJKE TUBE 

The effect of noise on the bistable characteristics of a prototypical thermoacoustic system, a 

horizontal Rijke tube is presented in this chapter. We perform bifurcation experiments in the 

presence of noise to determine the influence of noise on the width of the bistable zone. We also 

study the effect of noise in a theoretical model perturbed with additive Gaussian white noise. We 

compare the results obtained from the experiments with that obtained from the theoretical model.  

6.1. Reduction in the width of the bistable zone in the presence of external 

noise 

The bifurcation diagram depicting the variation of the median value of the peak acoustic pressure 

with heater power for a mass flow rate of 2.34 g/s, in the absence of external noise is presented in 

figure 6.1(a). A clear bistable zone and an abrupt jump in the value of acoustic pressure can be 

observed in the bifurcation plot, which confirms that the bifurcation is subcritical under this 

condition. Furthermore, the amplitude spectra shows a prominent frequency (figure 6.1(b)) and the 

reconstructed phase portrait shows an isolated closed orbit which represents a limit cycle (figure 

6.1(c)). The details of phase space reconstruction from an experimentally obtained time series data 

can be found in Abarbanel (1996) and its application to a thermoacoustic system is presented in 

Kabiraj & Sujith (2012).  The subcritical bifurcation observed here is in agreement with the 
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experimental and numerical results reported in the past (Matveev, 2003; Balasuramanian & Sujith, 

2008; Subramanian et al., 2010; Juniper, 2011; Mariappan, 2011).  

 

 

Figure:6.1 (a) Bifurcation diagram, obtained from experiments, depicting the variation of the 

median value of the peak acoustic pressure P with heater power K for mass flow 

rate ṁ = 2.34 g/s. Here, the transition to instability occurs via a subcritical Hopf 

bifurcation at the heater power K = 380 W. (b) The amplitude spectrum of the 

pressure time series, showing distinct peaks indicating limit cycle oscillations. The 

bin size used is 0.3 Hz. (c) Phase portrait reconstructed from pressure time series 

depicting an isolated closed orbit in the phase space. The experiment is conducted 

in the absence of external noise. ▲- Forward path; ▽   - Reverse path.  
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Figure: 6.2 (a) Bifurcation diagram, obtained from experiments, depicting the variation of the 

median value of the peak acoustic pressure P with heater power K, for a mass 

flow rate of ṁ = 2.34 g/s. Here, the transition to instability happens via a 

subcritical Hopf bifurcation at the heater power K = 382 W. (b) The amplitude 

spectrum of pressure time series, showing sharp peaks indicating limit cycle 

oscillations. (c) Phase portrait reconstructed from pressure time series, depicting 

an isolated closed orbit in the phase space. The experiment is performed in the 

presence of external noise of amplitude 10.5 Pa.    ▲- Forward path; ▽  - Reverse 

path.   



78 
 

Experiments were performed to investigate the effect of external noise on system dynamics. The 

bifurcation diagram, amplitude spectra and the reconstructed phase portrait in the presence of 

external noise of amplitude 10.5 Pa are shown in figures 6.2(a – c) respectively. It can be seen that 

the bifurcation remains subcritical in the presence of external noise of amplitude 10.5 Pa. Even in 

the presence of noise of 10.5 Pa, the change in frequency of oscillations is only 0.6 Hz which is of 

the order of the resolution of the FFT. Due to the presence of noise, the trajectories are spread out 

which is indicated by the increased thickness of the limit cycle (figure 6.2(c)). Further, we observe 

a reduction in the width of the bistable zone from 39 W to 19.3 W when external noise is applied.  

It is worth mentioning that Waugh & Juniper (2011) in their numerical study reported that “As the 

noise strength increases, the system becomes practically unstable further from the Hopf point, 

increasing the region where triggering may occur. As the noise strength increases further, the 

system can be dislodged from the stable periodic solution to the zero solution”.  Thus, from the 

work of Waugh & Juniper (2011) it can be inferred that the width of the bistable region decreases 

with increase in the intensity of the applied noise although they have not stated it explicitly or 

quantified it. Our observation of the reduction in the width of the bistable zone in the presence of 

Gaussian white noise is the first of its kind in experimental results reported in thermoacoustic 

literature. However, outside the context of thermoacoustics, a reduction in the width of the bistable 

zone in the presence of noise is observed in various dynamical systems (Sastry & Hijab, 1981; 

Coullet et al., 1985; Geier et al., 1985; Altares & Nicolis, 1988; Lekkas et al., 1988; L’Heureux 

& Kapral, 1989; Fedotov et al., 2002; Berthet et al., 2003).    

Experiments were performed at various noise levels for different mass flow rates to confirm the 

reduction in the width of the bistable zone. The noise level is increased with a step size of 1 Pa. 

Similarly, the variation of non-dimensional width of the bistable zone with the intensity of additive 
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Gaussian white noise is calculated from the theoritical model for different values of time lag τ. The 

time lag τ can be related to the mean flow using Lighthill’s estimate of 0.2dw/ 0u . Here, dw refers 

to the diameter of the heater wire and 0u  refers to the mean flow velocity (Lighthill, 1954; 

Subramanian et al., 2013).  

 

Figure: 6.3   Variation of non-dimensional width of the bistable zone (χ – χ0) calculated from 

experimental and numerical results with non-dimensional noise intensity β for 

different mass flow rates ṁ and for different time lags τ. The width of the bistable 

zone decreases with increase in noise intensity in both experiments and in numerical 

simulations. The rate of decrease is constant for all mass flow rates and for all time 

lags. Nevertheless, for the noise levels mentioned here, the transition remains 

subcritical both in experiments and in numerical simulation.  - ṁ = 2.19 g/s,               

 - ṁ = 2.34 g/s,  - ṁ = 2.50 g/s,  - ṁ = 2.97 g/s. ○ - τ = 0.2, □ - τ = 0.175,               

∆ - τ = 0.15, ◊ - τ = 0.125. 
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Figure 6.3 shows the variation of the non-dimensional width of the bistable zone with non-

dimensional noise intensity calculated from the experiments and from the numerical model. The 

non-dimensional width of the bistable zone, in the absence of externally added noise, is denoted 

by χ0. The uncertainty in non-dimensional width of the bistable zone (χ – χ0) is 0.008 and in the 

non-dimensional intensity of noise is 0.001. Inherent fluctuations are present in the experimental 

system even in the absence of external noise and these fluctuations correspond to a non-

dimensional noise intensity of 0.02. As a consequence, in Fig. 6.3 there is no experimental data 

corresponding to zero noise intensity. For noise amplitudes up to a threshold, a definite bistable 

zone exists, indicating a subcritical Hopf bifurcation. Nevertheless the width of the bistable zone 

decreases as the noise intensity increases. A linear decrease in the width of the bistable zone with 

increase in the intensity of the applied noise is observed both in the results from experiments and 

from the numerical model. Further, the rate of decrease is independent of the values of mass flow 

rates and the values of the time lag. 

6.2. Suppression of bistable zone in the presence of high amplitude noise 

Here, the effect of high amplitude noise on the bistable characteristics is described. Figure 6.4 

represents the variation of non-dimensional acoustic pressure with non-dimensional heater power 

for different values of non-dimensional noise intensity. Acoustic pressure is made non-

dimensional by dividing it with the mean pressure both in case of experiments and in case of 

theoretical model.  
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Figure: 6.4 Bifurcation diagrams, obtained from experiments (a-d) and from numerical model (e-

h) depicting the variation of median value of peak non-dimensional acoustic pressure 

p with normalized non-dimensional heater power k  (normalized by the value of heater 

power at the Hopf point in the absence of noise) for different values noise intensities. 

Here, β refers to the non-dimensional noise intensity. We can observe a change in the 

nature of transition and suppression of bistable region as the intensity of the external 

noise increases in experimental results. Although the pressure amplitudes differ in 

magnitude, a qualitatively similar behavior is observed in the case of numerical model. 

Note that the ordinates are different. ▲- Increasing k ; ▽  - Decreasing k . 
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The heater power K, in experiments is made non-dimensional by dividing it with the value of 

heater power at the Hopf point in the absence of external noise. In case of numerical model, the 

heater power k is non-dimensional to begin with. The value of k is normalized by dividing it with 

the value of non-dimensional heater power at the Hopf point in the absence of noise.   

Figures 6.4(a-d) represent the changes that happen with increasing noise intensity in experiments. 

The transition to instability is subcritical in the absence of external noise (figure 6.4(a)). When the 

non-dimensional noise intensity becomes 0.15, we observe a reduction in the width of the bistable 

zone (figure 6.4(b)). With further increase in the non-dimensional noise intensity to 0.35, there is 

a further reduction in the width of the bistable zone and the transition to instability becomes less 

abrupt (figure 6.4(c)). When the non-dimensional noise intensity is as high as 0.5, the bistable zone 

is no longer discernable and there is no jump in the value of acoustic pressure (figure 6.4(d)).  

Figure 6.4 (e-h) shows the variation of non-dimensional acoustic pressure with non-dimensional 

heater power for the theoritical model for various values of noise intensity. Similar to the 

experimental results, in the absence of noise, the transition is subcritical (figure 6.4(e)). We 

observe that the width of the bistable zone decreases with increase in noise intensity (figure 6.4(f)). 

With further increase in noise intensity, the transition starts to become continuous (figure 6.4(g)) 

and once the noise intensity becomes high, there is no visible bistable zone (figure 6.4(h)). 

Transition to instability can no longer be termed subcritical as the bistable zone is no longer 

discernable. Even when the transition is continuous there is no perfect overlap between forward 

and reverse paths (figure 6.4f). This is due to the fact that each realization of a stochastic process 

will be different even when all the system parameters are maintained constant.  It is to be noted 

that, in the case of numerical simulation, qualitatively similar trends with experiments are observed 

for lower values of non-dimensional noise intensities. 
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In the presence of high intensity noise, the system oscillates between a stable oscillatory state and 

a stable non-oscillatory state. This is referred to as flickering in the literature on the critical 

transitions observed in eco systems (Scheffer et al., 2009; Dakos et al., 2012). This flickering 

makes the transition continuous and the bistable region becomes indiscernible. The two features 

that help us to distinguish a subcritical transition are the presence of the bistable zone and an abrupt 

jump in the order parameter (acoustic pressure amplitude in the present case). As these two features 

become imperceptible beyond a critical noise threshold, we cannot attribute the transition as 

subcritical. This suppression of the subcritical nature of transition is in complete agreement with 

the earlier experimental and numerical observations on the effect of noise on nonlinear oscillator 

models (Sastry & Hijab, 1981; Juel et al., 1997; Zakharova et al., 2010).     

The histograms of the pressure time series, both from experiments and from numerical model, just 

at the onset of instability for various values of external noise are shown in Fig.6.5 to understand 

the change in the nature of distribution of pressure values in a single time series of acoustic 

pressure. The histogram is constructed by determining the number of data points N in the pressure 

time series having a non-dimensional pressure amplitude p ± Δp, where Δp refers to the width of 

the bin. In the absence of external noise, the distribution is bimodal with peaks situated away from 

the mean. When we increase the intensity of external noise, there is an increase in the spread of 

the distribution and a decrease in the height of the peaks. The values near the mean become more 

probable as the external noise amplitude is increased. Both experimental and numerical results 

depict the same behavior.    
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Figure: 6.5 Histogram of pressure time series at the onset of instability for experimental (a-d) and 

numerical (e-h) results for various values of noise amplitude. Here, β refers to the non-

dimensional noise intensity. N represents the number of data points in the pressure time 

series with a non-dimensional pressure p. ψ2 represents the variance of the pressure 

time series. We can see an increase in the spread of the distribution with increase in 

external noise amplitude, both in case of experimental and numerical results. The 

increase in the spread is confirmed by the increasing value of variance with increase in 

noise amplitude. The experimental and numerical results differ in magnitude; however, 

we intend a qualitative comparison rather than a quantitative one. Note that the 

abscissas are different by an order of magnitude. 
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This change in the distribution of the order parameter (acoustic pressure amplitude in our case) in 

the presence of high amplitude noise in bistable dynamical systems is reported outside the context 

of thermoacoustics (Juel et al., 1997; Deco & Marti, 2007). The change from an abrupt transition 

to a continuous transition in the presence of high amplitude noise indicates that it will be difficult 

to identify subcritical transitions that happen in a practical thermoacoustic system working in an 

environment with turbulent fluctuations.  

6.3. Concluding remarks 

In the present chapter, noise induced transitions that can happen in a nonlinear system, in the 

context of a horizontal Rijke tube is presented. It is found that even an external noise of amplitude 

two orders of magnitude less than the limit cycle amplitude can significantly influence the 

dynamical features of a thermoacoustic system. The experimental and numerical investigations 

show that the presence of noise reduces the width of the bistable region. The rate of decrease in 

non-dimensional width of the bistable zone is linear with noise strength and it is nearly the same 

for both experimental and numerical results. We observed that the rate of decrease of non-

dimensional width of the bistable zone with noise level is independent of the mass flow rate and 

the time lag. We found that in the presence of high intensity noise, the system exhibits the 

phenomenon of flickering. This flickering makes the transition continuous and there is a complete 

suppression of the bistable region. 
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CHAPTER 7 

STOCHASTIC BIFURCATION OBSERVED IN A HORIZONTAL 

RIJKE TUBE 

This chapter discusses the stochastic bifurcation that is observed in the horizontal Rijke tube. The 

stochastic bifurcation is characterized by analyzing the changes in the stationary probability 

distribution of acoustic pressure amplitude. The stationary probability distribution is obtained from 

the Fokker-Planck equation. A simple theoritical model which encompasses the essential features 

of a thermoacoustic system is considered to obtain Fokker-Planck equation. 

7.1 Background 

The addition of noise in the normal form equation of Hopf bifurcation changes the dynamics of 

the system and introduces novel dynamical states (Sastry & Hijab, 1981). The presence of additive 

or parametric noise can also induce global asymptotic stability in prototypical dynamical systems. 

The phenomenon of noise induced stability is observed for both supercritical and subcritical Hopf 

bifurcations (Mackey et al., 1989).  In the case of Hopf bifurcation, the presence of additive noise 

is found to smear out the sharp transition that is observed in a deterministic system (Juel et al., 

1997). Thus the determination of the Hopf point from experimental and numerical observations 

becomes impossible in the presence of additive noise. This difficulty in determining the bifurcation 

point is because the measured observable is no longer a deterministic quantity but a stochastic 

variable. Thus a single realization that we obtain in an experiment or from a mathematical model 

is incapable of providing the complete information about the state of the system. In the presence 
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of noise, stochastic differential equations (SDEs) are adopted instead of ordinary differential 

equations to describe the evolution of the system. Hence, we need to calculate the probability 

density function of the observable rather than its absolute value in the presence of noise. The 

probability density function of a stochastic variable can be obtained by solving the Fokker-Plank 

equation associated with the SDE (Stratonovich, 1963; Gardiner, 1997; Risken, 1989).  

As against the deterministic bifurcation where we track the evolution of the absolute value of the 

observable, we track the change in the probability distribution of the observable in the presence of 

noise. The qualitative changes observed in the probability distribution of the observable are termed 

as phenomenological bifurcations (P-bifurcation). The bifurcation associated with the absolute 

value of the measured variable is known as dynamic bifurcation (D-bifurcation). In a stochastic 

system, both phenomenological and dynamical bifurcations are found. Both P and D-bifurcations 

are classified as stochastic bifurcations. There are studies on the effect of additive and 

multiplicative noise on stochastic bifurcations that happen in nonlinear systems. Additive noise 

does not change the location of the extrema of the stationary probability density function whereas 

multiplicative noise introduces novel dynamical states (Bashkirtseva et al., 2015).   

The phenomenon of stochastic bifurcation is very well studied both using models. The stochastic 

Hopf bifurcation is studied in the context of various nonlinear oscillators (Arnold et al., 1999; 

Zakharova et al., 2010; Xu et al., 2011; Bashkirtseva et al., 2015) and in biological systems 

including neuron models, synthetic gene oscillators (Zakharova et al., 2010; Djeundam et al., 

2013) and cellular networks (Song et al., 2010). The framework of stochastic bifurcation is also 

used to study the effect of noise in self-sustained bistable oscillators (Zakharova et al., 2010). 

However, experimental studies on the concept of stochastic bifurcation are limited to driven laser 

systems (Billings et al., 2004).  



89 
 

The literature on stochastic bifurcation in engineering systems is minimal. Many engineering 

systems are nonlinear and most engineering systems work in the presence of noise. Due to the 

nonlinear nature, they can undergo sudden transitions from a non-oscillatory state to an oscillatory 

state for an infinitesimal change in any of the system parameters. The oscillatory state following a 

Hopf bifurcation can cause a total collapse or decrease in performance of an engineering system 

(Fisher & Rahman, 2009). One such engineering system where the margins of safe operation are 

limited by Hopf bifurcation is a thermoacoustic system. 

In Chapter 6, we find that the width of the bistable zone deceases with increase in the intensity of 

noise. Moreover, we also observe that there is a complete suppression of the bistable zone in the 

presence of high intensity noise. Therefore, it becomes impossible to ascertain the bifurcation point 

as evident from the results reported in Chapter 6. This difficulty in identifying the Hopf and fold 

points in the presence of high intensity noise brings in the need to calculate the stationary 

probability density function of the measured observable. As mentioned earlier, the stationary 

probability density function can be calculated by solving the Fokker-Planck (F-P) equation of the 

system.  

Noiray & Schuermans (2013a, 2013b), in their pioneering work, introduced Fokker-Planck 

formalism in the thermoacoustic literature. They derived the F-P equation for a thermoacoustic 

system undergoing supercritical Hopf bifurcation. Their primary focus was to derive growth and 

decay rates of thermoacoustic oscillations for the unsteady pressure data obtained from a gas 

turbine engine and compare it with the numerical model.   

In summary, the influence of noise characteristics on noise induced transitions has been studied in 

thermoacoustic systems. The F-P equation is derived for a thermoacoustic system depicting 
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supercritical Hopf bifurcation. The amplitude distribution obtained as a solution to the F-P 

equation is used to calculate the growth and decay rate of oscillations. The suppression of bistable 

zone in the presence of high intensity noise is also observed both in experimental and numerical 

frameworks. The issue of identifying the critical points of transition remains to be explored. It is 

necessary to adopt the amplitude distribution rather than the absolute value of the amplitude to 

determine the transition.     

7.2 Fokker-Planck equation for a prototypical thermoacoustic system 

From the results presented in Chapter 6, it is clear that the bifurcation points, Hopf point and fold 

point, cannot be determined in the presence of high intensity noise. In the presence of fluctuations, 

multiple realizations are required to describe the transition as any measured observable from the 

system is a stochastic variable. In this case, the peaks in the time series of acoustic pressure will 

follow a definite distribution rather than a single value. It will be more meaningful to describe the 

transition in terms of the nature of the amplitude distribution in such cases. Bifurcations in the 

system could be observed as changes in the distribution of the amplitude. To study this behavior 

of the probability distribution of amplitudes, the Fokker-Planck equation of the system needs to be 

derived. The probability distribution is a solution to the Fokker-Planck equation. 

In order to derive the Fokker-Planck (FP) equation of a prototypical thermoacoustic system, a 

theoritical model very similar to the one described in Chapter 2 is used. However, the theoritical 

model used for the purpose of deriving FP equation differs from the one described in Chapter 2 in 

terms of the model used for heat release. Here for generality, a simple nonlinear model that depicts 

the bistable behavior observed in experiments on horizontal Rijke tube is used.  
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Instead of the Heckl’s correlation (Heckl, 1988), a different model is used for heat release rate as 

described below 

3 5
( ) ( ) ( )                                                                                         (7.1)

1 2 3
Q a a a            

 

where 𝑎1, 𝑎2 and 𝑎3 are constants. The constants are chosen such that the bistable behavior 

observed in experiments can be captured. The third and fifth order nonlinearity is required to 

capture the unstable and stable limit cycles. The generic heat release model is adopted in order to 

extend the analysis to any thermoacoustic system. The motivation for using such a model to 

describe the stochastic dynamics of a thermoacoustic system can be found in Noiray & 

Schuermans (2013a, 2013b). The model for heat release rate given in Eqn. (7.1) is similar to the 

functions adopted in earlier studies by Campa & Juniper (2012) and Subramanian et al. (2012). 

For simplicity, a single mode is considered for this analysis. The ordinary differential equations 

obtained after adopting Galerkin technique (Lores & Zinn, 1973) are given below. 

                                                                                                                            (7.2)

22 ( )                                        
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dt

d
Q t
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



   



                                                      (7.3)

 

In Eqn. (7.3), a Gaussian white noise term ( )t  with ( ) 0t  and ( ) ( ) ( )t t I       is 

included to capture the influence of noise present in the system, where 𝐼 is the noise intensity.  

We write the state variables η and �̇� (used in Eqns. (7.2) and (7.3)) in terms of slowly varying 

amplitude and phase (Kryloff & Bogoliuboff, 1949). 

( ) ( )cos( ( ))                                                                                                         (7.4)  

( ) ( )sin( ( ))                                                 

t a t t

t a t t



 

 

                                                       (7.5) 
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where, ( ) ( )t t t     

We define a parameter 12 c    . Then, we transform Eqns. (7.2) and (7.3) in terms of the new 

variables a(t) and φ(t). 

1 1

2 2

( , )sin ( , ) ( )                                                                                               (7.6)

( , )cos ( , ) ( )                                            

da
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dt

d
f a g a t

dt
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


   

                                                     (7.7)

 

where, 
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In Eqn (7.8), c1, c2 and c3 represent constants and the values of these constants are selected such 

the probability distribution captures the distribution obtained from the experiments qualitatively.  

To derive the Ito’s equation for a and 𝜑, we perform averaging of (7.6) & (7.7) over one cycle of 

oscillation. More details on averaging can be found in Roberts & Spanos (1986).   

1 12 2
( )                                                                                           (7.10)

4 2

I I
da F dt dt dW t
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where W1(t) and W2(t) are independent Wiener processes and   
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2 2

1 1 2 1

0 0

1 1
sin                                (7.12)     cos                                 (7.13)

2 2
F f d F f d

 

 
      

 

Clearly, the equation for amplitude is independent of the phase. Therefore, it is not necessary to 

write the joint probability density for amplitude and phase. The transition probability density 

function Ω(a,t) for the amplitude can be obtained as a solution of the following Fokker-Planck 

equation. 

53 253( , ) 32 ( , ) ( , )                (7.14)
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where, 
3

( )n    and
3 5

( ) ( )m         

The stationary probability density ( )a  can be obtained from Eqn. (7.14) as given below. 
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8 24

( )                                                                   (7.15)

c m ac n aa
I I I

a Cae

 
 
 
 
 
 
  

  

 

 

where C is the normalization constant.    

The extrema of the probability density function Ω(a) can be obtained from the roots of the equation 

given below. 

64
56 42 328 0                                                                                                    (7.16)
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The extrema can be obtained for different values of  and I , where I is the intensity of additive 

noise. The number of real roots of Eqn. (7.16) indicates the nature of the probability distribution. 

The distribution is unimodal if the number of real roots is 1 while the distribution is bimodal if the 

number of real roots is 3 (Zakharova et al., 2010). Here, we define a normalized parameter,

1
h




  , where h  is the value of the control parameter at the Hopf point.   

 

Figure 7.1:  The regimes of unimodal and bimodal probability distribution in the (μ, I) plane, where 

μ is the control parameter and I is the intensity of the noise. Regions I and III 

correspond to the parameter regimes where the amplitude distribution is unimodal 

whereas region II corresponds to the parameter regime of bimodal amplitude 

distribution. The boundaries of the regions represent the locus of points where 

phenomenological bifurcation occurs. It can also be observed that above a noise 

intensity P-bifurcations are not observed.  

The bifurcation diagram in the (μ, I) plane is shown in Fig. 7.1. Regions I and III correspond to 

unimodal probability distribution of amplitude while region II corresponds to bimodal amplitude 

distribution. For low intensities, P-bifurcations can be observed when the parameter μ is varied. 
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As the noise intensity is increased, the bimodality region reduces which corresponds to the 

reduction in width of the bistable zone in the experiments. Beyond a noise level                              

(noise intensity I = 6 in the model), P-bifurcations are not observed. In this case, the probability 

distribution remains unimodal for changes in the parameter μ. 

7.3 Concluding remarks 

This study gains significance as most thermoacoustic systems work in noisy environments. 

Moreover, the bifurcation characteristics of a prototypical thermoacoustic system in the presence 

of high amplitude noise using experimental and numerical methods are identified. The Fokker-

Planck equation associated with the governing differential equations of the system was derived. 

The suppression of the bistable zone is also identified with the help of probability distributions 

obtained by solving the Fokker-Planck equation.   
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CHAPTER 8 

EARLY WARNING MEASURES FOR CRITICAL TRANSITIONS IN 

A HORIZONTAL RIJKE TUBE 

In this chapter, a description of early warning measures based on the theory of critical slowing 

down to predict impending transitions in a prototypical thermoacoustic system is provided. It is 

found that the early warning measures such as variance increases well before the impending 

bifurcation and act as an effective precursor. The robustness of these early warning measures in 

the presence of noise is also established here. The viability of early warning measures are shown 

both in experiments and in a numerical model.  

8.1 Early warning indicators based on critical slowing down 

Many nonlinear systems such as eco systems, financial markets, and spiking neurons exhibit 

critical transitions (Lewontin, 1969; Holling, 1973; May, 1977; Carpenter et al., 1999; Jackson et 

al., 2001; K´efi et al., 2007; Dakos et al., 2008; Lenton et al., 2009). In a critical transition, the 

system moves from one stable state to another stable state and often this transition is not desirable. 

Most of these transitions are catastrophic in nature as they involve hysteresis, where the critical 

points for forward and reverse switching differ (Scheffer, 2009). In an eco-system, the critical 

transition may result in sudden extinction of certain species. In a financial market, a critical 

transition may result in a sudden collapse of the market (Scheffer et al., 2001). The undesirable 

state following a critical transition creates the need to develop early warning measures to detect 

the proximity of the system to a critical point or tipping point. 
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Over the years, many early warning measures were developed to detect critical transitions in 

complex systems. A pioneering study on early warning signals was carried out by Scheffer et al. 

(2009). They proposed a plethora of early warning measures to predict the sudden change in eco 

systems, climatic shifts, collapse of financial markets and the onset of asthmatic attacks and 

epileptic seizures. We can find an extensive of use of these early warning measures to predict 

critical transitions in almost every field of science starting from ecology and extending up to 

medicine where these measures are used for prognosis (Dakos et al., 2008; Meisel et al., 2015; 

Livina et al., 2015; Trefois et al., 2015). Many studies applied these early warning measures to 

numerical models of complex systems. The viability of these measures are proved also with the 

help of experiments (Drake & Griffien, 2010; Kramer & Rose, 1985; Tredicce et al., 2004; 

Carpenter et al., 2011). Recent findings indicate that, even critical transitions that happen via 

subcritical Hopf bifurcation in spiking neurons can be predicted using these early warning 

measures (Meisel et al., 2015). The applicability of early warning measures are not limited to low 

dimensional reduced order models but also extends to high dimensional complex systems (Kuehn 

et al., 2015).  

The early warning signals for critical transitions are obtained by exploiting the phenomenon of 

critical slowing down exhibited by dynamical systems near a transition. Critical slowing down 

results in increased autocorrelation and a rise in variance, before the onset of a critical transition. 

As a result of critical slowing down, the present state of the system resembles its past state and this 

increase in the ‘memory’ of the system results in the increase in the value of autocorrelation. 

Moreover, the rate at which the perturbations decay reduces due to critical slowing down and this 

results in the increase in variance as we approach the transition. Hence, autocorrelation and 

variance can be used as early warning measures in a real world system. Although enough literature 
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exist on the use of early warning signals for predicting the transitions in natural systems, the 

applicability of early warning signal to an engineering system is yet to be explored. Moreover, the 

robustness of the early warning indicators in the presence of fluctuations is not yet studied in the 

context of a physical system. In this study, the early warning measures to predict the critical 

transition is applied for the first time in an engineering system.  

8.2 Early warning measures for subcritical Hopf bifurcation in a Rijke 

tube 

Main aim here is to develop an early warning signal to enable the operator in the field to shut down 

the system before it reaches the oscillatory state. Unlike a laboratory experiment where we vary 

the control parameter in a quasi-static way, the control parameter is varied continuously in a 

practical environment. This prompted us to capture the time series depicting the transition from 

non-oscillatory state to oscillatory state. The heater power K is varied in every 20 s and the 

corresponding acoustic pressure is noted down using pressure sensors (Fig. 8.1a). The metric based 

methods suggested by Dakos et al. (2012) is used to calculate the early warning signals in the 

current study. A rolling window is used to calculate the autocorrelation and the variance (Dakos 

et al., 2012). As we require precursors for an impending transition, time series prior to the 

transition is used to calculate the early warning measures. A significant increase in the value of 

variance well before the transition is observed, hence variance can clearly serve as an early warning 

signal (Fig. 8.1b). The trend is calculated by measuring the slope of a linear fit to the variation of 

autocorrelation and variance with respect to time. However, the lag-1 autocorrelation decreased 

before the transition rendering it as a less effective early warning signal (Fig. 8.1c).  
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Figure: 8.1 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system using pressure time series generated from the experiments (a) Time series of 

acoustic pressure depicting transition from one stable to an alternate stable state. The 

control parameter is increased every 20 seconds. The system undergoes a critical 

transition from a non-oscillatory state to an oscillatory state via a subcritical Hopf 

bifurcation (b) Plot depicting the change in lag-1 autocorrelation as the system 

approaches the critical transition. (c) Plot depicting the change in variance as the 

system approaches the critical transition. The lag-1 autocorrelation and variance are 

calculated using a moving window of half the size of the time series. The black 

horizontal arrow represents the length of the moving window. We observe a clear 

increase in variance, well before the transition, whereas the autocorrelation shows a 

decrease. The thick black line indicates the time stamp up to which the data is used to 

generate the early warning indicators. Although, no external noise added to the system, 

the inherent fluctuations in the system correspond to a non-dimensional noise intensity 

β = 0.02.  

The observation of variance being a more robust early warning measure than lag-1 autocorrelation 

is completely in conformity with Kuehn (2011).  Although, no external noise is added, the system 

has inherent aperiodic fluctuations. The presence of inherent fluctuations makes autocorrelation a 
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less effective precursor and it is established that autocorrelation can increase or decrease in the 

presence of fluctuations. In order to use autocorrelation as a precursor, we need to have multiple 

realizations of the transition, which may not be feasible in a real time engineering system 

(Carpenter & Brock 2011). The amplitude of the inherent fluctuations is made non-dimensional 

by dividing it with the amplitude of periodic oscillations. This non-dimensional noise intensity is 

denoted by β. 

 

Figure: 8.2 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system using pressure time series generated from the numerical model (a) Time series 

of acoustic pressure depicting the transition from one stable to an alternate stable state. 

The control parameter is increased at every time step. The system undergoes a critical 

transition from a non-oscillatory state to an oscillatory state via a subcritical Hopf 

bifurcation (b) Plot depicting the change in variance as the system approaches the 

critical transition. (c) Plot depicting the change in lag-1 autocorrelation as the system 

approaches the critical transition. A clear increase in variance well before the 

transition can be observed. The non-dimensional noise intensity is maintained as           

β = 0.02 to match with the experimental conditions. 
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Further, the search for effective early warning signals for a thermo-acoustic system is extended in 

a numerical model. In order to simulate the experimental conditions, the numerical model is 

perturbed with additive Gaussian white noise such that the non-dimensional noise intensity is the 

same as that of the experiments. The control parameter is varied at each time step and the 

corresponding acoustic pressure is calculated. The lag-1 autocorrelation and variance were 

calculated using the same procedure as that followed for the time series obtained from experiments. 

Here also a significant increase in the variance and a decrease in the value of the lag- 1 

autocorrelation are observed well before the transition (Fig. 8.2). The observation from the model 

makes it clear that variance is a robust early warning signal compared to lag -1 autocorrelation. 

8.3 Robustness of early warning indicators in the presence of noise 

As practical combustion systems work in a turbulent environment, the robustness of the early 

warning indicators in the presence of fluctuations needs to be verified. As the prototypical 

thermoacoustic system has a low amount of inherent fluctuations, external noise is added using 

loudspeakers. The detailed procedure of adding external noise to the system can be found in 

Chapter 2. We find that the early warning indicators work well even in the presence of external 

fluctuations. Here also, the control parameter is changed in every 20 s and the corresponding 

acoustic pressure is recorded. Robustness of the early warning indicators are tested in the presence 

of fluctuations of intensity 0.05, 0.1 and 0.2. We can see that both lag-1 autocorrelation and 

variance register an increase well before the transition even in the presence of external fluctuations  

(Figs. 8.3, 8.4 & 8.5). The current experimental results prove that early warning indicators perform 

very well even in the presence of high intensity external fluctuations.  
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Figure: 8.3 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system in the presence of external fluctuations using pressure time series generated 

from the experiments (a) Time series of acoustic pressure depicting transition from 

one stable to an alternate stable state. The control parameter is increased every 20 

seconds. The system undergoes a critical transition from a non-oscillatory state to an 

oscillatory state via a subcritical Hopf bifurcation (b) Plot depicting the change in 

variance as the system approaches the critical transition. (c) Plot depicting the change 

in lag-1 autocorrelation as the system approaches the critical transition. A clear 

increase in variance as well as autocorrelation can be observed well before the 

transition. External noise is added to the system such that the non-dimensional noise 

intensity is β = 0.05.  



104 
 

 

Figure: 8.4 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system in the presence of external fluctuations using pressure time series generated 

from the experiments (a) Time series of acoustic pressure depicting transition from 

one stable to an alternate stable state. The control parameter is increased every 20 

seconds. The system undergoes a critical transition from a non-oscillatory state to an 

oscillatory state via a subcritical Hopf bifurcation (b) Plot depicting the change in 

variance as the system approaches the critical transition. (c) Plot depicting the change 

in lag-1 autocorrelation as the system approaches the critical transition. A clear 

increase in variance as well as autocorrelation can be observed well before the 

transition. External noise is added to the system such that the non-dimensional noise 

intensity is β = 0.1.  
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Figure: 8.5 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system in the presence of external fluctuations using pressure time series generated 

from the experiments (a) Time series of acoustic pressure depicting transition from 

one stable to an alternate stable state. The control parameter is increased every 20 

seconds. The system undergoes a critical transition from a non-oscillatory state to an 

oscillatory state via a subcritical Hopf bifurcation (b) Plot depicting the change in 

variance as the system approaches the critical transition. (c) Plot depicting the change 

in lag-1 autocorrelation as the system approaches the critical transition. A clear 

increase in variance as well as autocorrelation can be observed well before the 

transition. External noise is added to the system such that the non-dimensional noise 

intensity is β = 0.2.  

 

Further, the robustness of these early warning indicators is tested using the numerical model. In 

the numerical model, Gaussian white noise of high intensity is added to match with the 

experimental conditions. A trend similar to that of experiments is observed where both lag-1 

autocorrelation and variance showed a significant increase well before the transition (Figs. 8.6, 8.7 

& 8.8). The results from the present study show that irrespective of the presence of inherent or 



106 
 

external fluctuations, the early warning indicators perform well and forewarn us about an 

impending critical transition.  

 

 

Figure: 8.6 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system using pressure time series generated from the numerical model (a) Time series 

of acoustic pressure depicting the transition from one stable to an alternate stable state. 

The control parameter is increased at every time step. The system undergoes a critical 

transition from a non-oscillatory state to an oscillatory state via a subcritical Hopf 

bifurcation (b) Plot depicting the change in variance as the system approaches the 

critical transition. (c) Plot depicting the change in lag-1 autocorrelation as the system 

approaches the critical transition. A clear increase in variance well before the 

transition can be observed. The non-dimensional noise intensity is maintained as           

β = 0.05 to match with the experimental conditions. 
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Figure: 8.7 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system using pressure time series generated from the numerical model (a) Time series 

of acoustic pressure depicting the transition from one stable to an alternate stable state. 

The control parameter is increased at every time step. The system undergoes a critical 

transition from a non-oscillatory state to an oscillatory state via a subcritical Hopf 

bifurcation (b) Plot depicting the change in variance as the system approaches the 

critical transition. (c) Plot depicting the change in lag-1 autocorrelation as the system 

approaches the critical transition. A clear increase in variance well before the 

transition can be observed. The non-dimensional noise intensity is maintained as           

β = 0.1 to match with the experimental conditions. 
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Figure: 8.8 Early warning signals for a subcritical bifurcation in a prototypical thermo-acoustic 

system in the presence of high intensity additive noise using pressure time series 

generated from the numerical model (a) Time series of acoustic pressure depicting the 

transition from one stable to an alternate stable state. The control parameter is 

increased in every time step. The system undergoes a critical transition from a non-

oscillatory state to an oscillatory state via a subcritical Hopf bifurcation (b) Plot 

depicting the change in variance as the system approaches the critical transition. (c) 

Plot depicting the change in lag-1 autocorrelation as the system approaches the critical 

transition. A clear increase both in autocorrelation and in variance can be observed 

well before the transition. The thick black line indicates the time stamp up to which 

the data is used to generate the early warning measures. The non-dimensional noise 

intensity β = 0.2 to match with the experimental conditions. 

 

8.4 Concluding remarks 

We find that the early warning measures based on critical slowing down are able to predict 

catastrophic transitions in an engineering system. As we approach a subcritical Hopf bifurcation, 

the system dynamics can be projected in the eigenvector corresponding to the most unstable 
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eigenvalue (Ditlevsen & Johnsen, 2010). Since the real part of the dominant eigenvalue will 

become zero at the Hopf point, there will be an increase in autocorrelation and in variance 

(Scheffer et al., 2009; Kuehn, 2011; Dakos et al., 2012). However, variance acts as better precursor 

than autocorrelation in the presence of noise (Carpenter & Brock, 2011; Cecchi et al., 2015). As 

the prototypical thermoacoustic system has inherent fluctuations, variance appears to be a more 

robust precursor than autocorrelation in predicting the critical transition. The ineffectiveness of the 

autocorrelation as an early warning signal is basically because we are using a single sample path 

or a single realization (Kuehn, 2011). The robustness of variance as an early warning signal opens 

up the possibility of applying this measure to predict critical transitions in engineering systems 

which work in the presence of noise. It is also established that the early warning measures are able 

to predict a subcritical Hopf bifurcation observed in a real system. 

As many of the engineering systems exhibit catastrophic transitions, the findings from this study 

are highly pertinent. By implementing the early warning measures in systems such as the one 

considered in the present study, we can prevent catastrophic transitions in many engineering 

systems. The analysis employed in this investigation can be extended in future to turbulent reactive 

flows, aero-acoustic systems, aero-elastic systems and to any general system exhibiting oscillatory 

instability.   
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CHAPTER 9 

 

CONCLUSIONS 

 

The present thesis focuses on the effect of system parameters and noise on the bistable 

characteristics of a prototypical thermoacoustic system. The dependence of the width of the 

bistable zone with Strouhal number is established. Further, the reduction in the width of the 

bistable zone with increase in the intensity of noise is also investigated. The effect of high 

intensity noise on the bistable characteristics is analyzed by deriving the associated Fokker-

Planck equation. Finally, precursors based on critical slowing down are shown to predict an 

impending bifurcation in a horizontal Rijke tube. 

The effect of system parameters such as heater power and heater location on the bistable 

characteristics of a horizontal Rijke tube is understood by performing experiments. It is shown 

that for the experimental conditions employed in the present study, the transition to 

thermoacoustic instability happens always through subcritical Hopf bifurcation. A reduction in 

the width of the bistable zone with increase in Strouhal number is observed both in experiments 

and in mathematical model. Further, a power law relationship between the non-dimensional 

width of the bistable zone and Strouhal number is established. The present study reveals that 

the non-dimensional width of the bistable zone remains nearly the same irrespective of the 

choice of bifurcation parameter for the Strouhal numbers considered. Period-2 oscillations are 

found when heater location is chosen as a bifurcation parameter which is in conformity with 

numerical results reported in literature. 

We establish that the width of the bistable zone decreases with increase in the noise intensity. 

The rate of decrease is found be independent of the mass flow rate in case of experiments and 

time lag in case of numerical model. A complete suppression of the bistable zone is observed 
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in the presence of high intensity noise. Fokker-Planck formalism is used to study the stochastic 

bifurcations that happen in the presence of high intensity noise. The qualitative changes in the 

distribution of the pressure amplitude are studied and the regions of phenomenological 

bifurcation are identified.  

Early warning measures such as autocorrelation and variance are developed for predicting the 

subcritical transitions observed in the horizontal Rijke tube. It is observed that there is a marked 

increase in the variance well before the subcritical Hopf bifurcation. This increase in variance 

well ahead of the transition makes variance a suitable precursor for predicting the impending 

transition. Unlike the marked increase in variance, such a trend is not observed in 

autocorrelation. This ineffectiveness of autocorrelation to act as a precursor can be attributed 

to the presence of noise in the system. However, variance is proved to be a robust precursor 

even in the presence of high intensity noise.  

In summary, the present thesis brings out the dependence of the width of the bistable zone on 

Strouhal number and the intensity of the noise present in the system. Further, it is also 

established that the early warning measures based on the theory of critical slowing down can 

be used as robust precursors. Further studies can be conducted in order to understand the reason 

for the existence of bistable zone in a Rijke tube. Another aspect that can be analyzed is the 

possibility for observing a change of criticality in the transition from non-oscillatory to 

oscillatory state. In the current study, the control parameters are varied quasi-statically. It will 

be interesting to investigate the effect of variation of control parameters as a function of time 

on the dynamic characteristics of the proto typical thermoacoustic system. The possibility for 

detecting co-dimension 2 bifurcation in experiments can also be explored in future.  
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In the present study, the effect of additive noise on the dynamics of Rijke tube is explored. In 

future, experiments can be performed to analyze the influence of multiplicative and parametric 

noise. The possibility for observing noise induced intermittency can also be studied.  

The findings in the current study can be extended to turbulent combustion systems. The effect 

of increasing turbulence on the transition to combustion instability can be investigated and can 

be compared with the effect of increasing noise intensity. Further, the early warning measures 

employed in the present study can be used in turbulent combustion systems to predict the 

transition to combustion instability and blow out. The tools and techniques used in the current 

thesis can be used for the analysis of not only engineering systems but also for eco systems, 

financial markets and physiological systems.    
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APPENDIX A 

Stochastic Runge-Kutta method applied to a general stochastic 

differential equation 

In this appendix, we describe the procedure to numerically integrate a general stochastic 

differential equation. We consider a general stochastic differential equation to show the application 

of stochastic Runge-Kutta method to integrate the differential equations in time (Richardson 2009). 

Let us consider the general form of an autonomous stochastic differential equation 

( ) ( ( )) ( ( )) ( )                                                                                                        (A.1)dX t f X t dt g X t dW t   

Here, X represents the dependent variable and t represents the independent variable say time. f and 

g correspond to the functions of the dependent variable X. The second term on the right hand side 

of Eqn. (A.1) represents the noise term, and the noise increment dW(t) is generated from a Wiener 

process. The value of the dependent variable X(t) at any time t is given by the expression   

0 0

( ) (0) ( (s)) ( (s)) (s)                                                                                         (A.2)

t t

X t X f X ds g X dW   

 

Let δt be the time step and let L be the total number of time steps that we use to numerically 

integrate Eqn. (A 2). The value of the dependent variable at any time τj = j δt, where j = 0,… L. is 

given by  

0 0

( ) (0) ( (s)) ( (s)) (s)                                                                                     (A.3)

j j

jX X f X ds g X dW

 

      
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Similarly

1 1

1

0 0

( ) (0) ( (s)) ( (s)) (s)                                                                               (A.4)

j j

jX X f X ds g X dW

 



 

      

If we subtract Eqn. (A.4) from Eqn. (A.3), then we will get 

1 1

1( ) ( ) ( (s)) ( (s)) (s)                                                                             (A.5)

j j

j j

j jX X f X ds g X dW

 

 

 

 

   

The second term on the right hand side of Eqn. (A.5) can be integrated using the conventional 

deterministic Runge-Kutta method and we get 

 

1

1 2 3 42 2
( (s))                                                                                                (A.6)

6

j

j

K K K K
f X ds



 

   
  
 

  

where K1, K2, K3 and K4 are the increments calculated using 4th order Runge-Kutta algorithm. 

The third term on the right hand side of Eqn. (A.5), which is stochastic, can be obtained using the 

principles of stochastic calculus. We use Ito’s formulation to integrate the stochastic integral. 

1
2

1 1

00

1
( (t)) (t) { ( ( ))[ ( ) ( )]+ ( ( )) ( ( )) [ ( ) ( )) - ] .. }     (A.7)

2

T N

j j j j j j j

j

g X dW g X t W t W t g X t g X t W t W t t


 



   

 

If the coefficient of the noise term is independent of the state of the system such that g(x) = σ, i.e. 

when the noise term is additive in nature; Eqn. (A.7) changes to 

1

1

00

(t) [ ( ) ( )]                                                                                                          (A.8)

T N

j j

j

dW W t W t 






 

 

If we substitute Eqns. (A 8) and (A 6) to Eqn. (A 5) then we get 
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1 2 3 4
1 1

2 2
( ) ( ) [ ( ) ( )]                                                            (A.9)

6
j j j j

K K K K
X X W t W t   

   
    

 

 

Thus, we can numerically integrate Eqn. (A.2) in time to get ( )X t . 
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APPENDIX B 

Methods to calculate lag-1 autocorrelation and variance 

The statistical analyses were performed using the “Early Warning Signals Tool Box” 

(http://www.early-warning-signals.org/). The time series up to the impending critical transition is 

used to calculate the early warning indicators. For variance and autocorrelation, the temporal trend 

is calculated by estimating the nonparametric Kendall rank correlation (𝜏𝑘). Kendall’s 𝜏𝑘 is a 

statistical tool used to measure the association between two measured quantities. Lag-1 

autocorrelation is determined by the autocorrelation function (ACF) given below: 

𝜌1 =
𝐸[(𝑃(𝑡) − 𝑃𝑚)(𝑃(𝑡 + 1) − 𝑃𝑚)]

𝜎2
,                                                                                              (B. 1) 

where, 𝑃(𝑡) is the value of the state variable at time 𝑡, and 𝑃𝑚 and 𝜎2 are the mean and variance 

of 𝑃(𝑡) within the time frame considered. Variance is calculated as: 

𝜎2 =
1

𝑁
∑(𝑃(𝑡) − 𝑃𝑚)2

𝑁

𝑡=1

,                                                                                                                      (B. 2) 

where 𝑁 is the number of observations. 

In the current study, the time required to compute the early warning measures for a moving window 

(of half the size of the time series) is around 0.03 seconds using a code written in R. The computing 

facility used has an Intel (R) Core (TM2 Quad CPU) processor with frequency 3 GHz, 16 GB 

RAM and 64 bit operating system.  

http://www.early-warning-signals.org/
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