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Whenever virtue subsides and wickedness prevails,

I manifest myself.

To establish virtue, to destroy evil,

to save the good I come from eon to eon.

BHAGAVAD GITA (chapter 4, verses - 7 and 8)
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ABSTRACT

KEYWORDS: thermoacoustic instability; rocket combustion; coupled

interaction; dynamical systems theory.

Combustors in modern high-performing rocket engines are prone to transverse

thermoacoustic instability characterized by large amplitude high-frequency acoustic

pressure and heat release rate oscillations. The occurrence of such thermoacoustic

instability can overwhelm the thermal protection mechanisms in the thrust chamber,

impart irreparable structural damages, and result in catastrophic explosions. In this

thesis, we study the thermoacoustic behavior of an 11-bar self-excited multi-element

model rocket combustor operating on an oxidizer-rich staged combustion cycle. We

introduce the framework of dynamical systems theory and complex systems theory to

analyze the temporal and spatiotemporal dynamics of rocket combustors.

First, we identify the presence of intermittency between the stable state and

thermoacoustic instability. We characterize the acoustic pressure oscillations recorded

for each dynamical state using tools from nonlinear dynamics, recurrence, multifractal,

and network analyses. Given the exorbitant costs involved in a full-scale rocket

test, a thorough understanding of the various dynamical behaviors possible in a

rocket combustor is mandatory to build accurate models, validate existing models and

computational fluid dynamics (CFD) simulations, and importantly avoid developmental

setbacks and in-flight jeopardies. We develop measures based on recurrence and

multifractal theories which can be used towards characterizing the features present in a

signal, which in turn is necessary to stringently validate models and CFD simulations

aimed at characterizing the combustion stability of rocket engines. Using recurrence

plots and recurrence networks, we identify unique features arising from the slow-

fast timescales present in the wave steepened acoustic pressure oscillations during

thermoacoustic instability.
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Next, we analyze the coupled interaction between acoustic pressure oscillations

and methylidyne (CH*) chemiluminescence intensity oscillations for the different

dynamical states observed using tools from synchronization theory. We find that only

the first few transverse acoustic modes participate in thermoacoustic driving. In the final

part of the thesis, using weighted correlation spatial network analysis, we quantified

the level of coherence present in the spatiotemporal CH* intensity oscillations in the

combustor. The insights gained from the analysis of the coupled interaction between

acoustic pressure and CH* intensity oscillations, and the findings from the correlation

network analysis, during the transition from stable state to thermoacoustic instability,

can be leveraged to build better models and develop compatible control strategies to

suppress ruinously large amplitude oscillations in rocket combustors.
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GLOSSARY

The following are some of the commonly used terms in this thesis:

CFD A branch of fluid mechanics that uses numerical analysis and data

structures to analyze and solve problems that involve fluid flows

LPRE Liquid propelled rocket engine: Rocket propelled by combustion

of energetic liquid or gaseous reactants, generally used in launch

vehicles transporting large payloads from earth’s surface to orbital and

interplanetary space
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CHAPTER 1

INTRODUCTION

Liquid propellant rocket engines (LPREs) are vital for propelling launch vehicles which

transport large payloads into orbital and interplanetary space. With the space industry

projected to grow in the coming decades (Indian Space Research Organization, 2021;

Weinzierl, 2018), a lot of emphasis is placed on the improvement and development of

earth and space observation satellite services and manned explorations. Hence, there is

an impending need to consistently upgrade existing LPRE families as well as develop

new LPREs to meet the diverse requirements of each space mission.

Combustion instability is one of the major challenges while developing LPREs

(Anderson and Yang, 1995; Watanabe et al., 2016). Combustion instability (also

used interchangeably as thermoacoustic instability) refers to the self-sustained large

amplitude oscillations in the pressure and heat release rate in the thrust chamber of

LPREs. This phenomenon can occur not only during steady-state operation, but also

during startup, shutdown and throttling operation. The incidence of large amplitude

oscillations in an LPRE can

(a) impart high amplitude vibrations (acceleration > 300 g) leading to structural
failure

(b) engender thrust oscillations resulting in loss of control

(c) cause excessive heat transfer to the thrust chamber walls and injector plates

(d) interfere with the vehicle communication systems

In Fig. 1.1, we show photographs of damage incurred to the different components

of LPREs during development. Due to the extremely high power density (> 30

GW/m3) in the thrust chamber (Culick and Kuentzmann, 2006), the occurrence of

combustion instability for just a brief time interval can result in a mission-threatening

damage or partial/complete failure of the LPRE. Hence, a lot of emphasis is placed on

characterizing thermoacoustic instabilities, understanding the mechanisms behind them



Fig. 1.1: (a) Effect of thermoacoustic oscillations on an LPRE injector before and
after a test. Reproduced from Bloomer et al. (1968) - (allowed for public
use). (b) The thrust chamber exploded during the testing of an LPRE in the
rocket engine test facility of NASA in 1958 (Glenn Research Center, 2018).
(c) Injector failure during the development of the space shuttle main engine.
Reproduced from Goetz and Monk (2005) - (allowed for public use).

and also on the modifications necessary to bring down the amplitudes to acceptable

levels. As a result, all LPREs must be proven to be free of thermoacoustic instabilities

before mission flight. These extensive tests usually lead to large cost overruns and

delays in schedule.

Combustion instability is not only observed in LPREs, but also widely reported in solid

rocket motors (Culick and Kuentzmann, 2006), aero - gas turbine engines (Poinsot,

2017), power - producing gas turbine engines (Lieuwen and Yang, 2005), afterburners
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(Henderson and Lewis, 1989), industrial furnaces and boilers (Flynn et al., 2017).

Therefore, combustion instability is extensively studied by a variety of researchers

affiliated with combustion and acoustic sciences.

1.1 BACKGROUND ON LIQUID ROCKET PROPULSION

The main components of an LPRE are shown in Fig. 1.2. Propellants (fuel and oxidizer)

are stored in pressurized tanks which form the bulk of the launch vehicle’s volume and

mass. The propellants are transported to the injectors through a circuit of feed lines,

control valves, pumps and manifolds. The pumps in high thrust generating LPREs

usually are powered by a turbo assembly (one or more turbopumps). A gear assembly

helps to operate the turbo assemblies at different speeds to obtain the desired fuel and

oxidizer flow rates. A small proportion of the main propellant flow is usually sufficient

to run the gas generator which powers the turbo assemblies. Then, a series of injectors

Fig. 1.2: Schematic diagram of the main components of a liquid propellant rocket
engine. Reproduced with permission from Sutton and Biblarz (2016).
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shower the propellants into the head end of the thrust chamber. Carefully designed

injectors ensure that the liquid propellants are atomized into small droplets using a

liquid spray jet. Then, the droplets vaporize, diffuse and mix to achieve the desired

mixture ratio necessary for efficient combustion. The converging – diverging bell nozzle

at the end of the thrust chamber accelerates the combustion products to high velocities.

The hot gases exhausted out of the nozzles impart a reactive thrust force on the launch

vehicle. Due to the high pressure and temperature environment in the thrust chamber,

active thermal management is required to dissipate the heat from the walls of the thrust

chamber.

The performance of an LPRE is usually judged by the thrust generated and its specific

impulse (Sutton and Biblarz, 2016). Specific impulse (Isp) indicates the efficiency with

which propulsive energy is extracted from the propellants. Specific impulse can be

defined as the total impulse per unit weight of the propellant.

Isp =

∫ t

0
F dt

g0
∫ t

0
ṁ dt

(1.1)

Equation. 1.1 gives a time-averaged value of Isp. Here, F , ṁ and g0 are the

instantaneous thrust, propellant mass flow rate, and standard acceleration of gravity

(9.8 m/s2 at sea level) respectively. Under constant thrust and propellant flow rates,

Eq. 1.1 reduces to

Isp =
F

ṁg0
(1.2)

Higher Isp implies proper utilization of the propellants, which in turn is a reflection of

the efficiency of the LPRE. Therefore, Isp is used to compare different rocket engines.

The Isp of LPREs lies between 250 – 450 s while that of solid rocket motors are in

the range 150 - 300 s (Sutton and Biblarz, 2016). Non-chemical rocket propulsion

such as electric, ion and nuclear propulsion have even higher Isp. However, they

only can be applied for low-thrust applications currently. Apart from high Isp, LPREs

offer significant advantages over other rocket propulsion methods. By controlling the
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oxidizer and fuel flow rates, LPREs offer multiple restarts, shutdowns and throttling

capabilities. As a result, LPREs are also preferred for planetary descent, attitude

control, station-keeping, orbit change maneuvers (Sutton and Biblarz, 2016).

Depending on the manner in which the propellants are introduced into the thrust

chamber, several engine cycles exist (Sutton and Biblarz, 2016; Manski et al., 1998).

Early LPREs were based on pressure-fed cycle in which the propellants are forced into

the thrust chamber using just the pressure head from the pressurized propellant tanks.

The tanks of LPREs based on pressure-fed cycle need to have thick walls to withstand

high pressures and therefore weigh more. For high thrust requirements, pressure fed

cycle imposes a huge weight penalty. To reduce the weight, it is essential to get rid of

the pressurized tanks. This led to the development of LPREs based on the gas generator

cycle.

In a gas generator cycle, a small percentage of the propellants are burnt in a gas

generator to power turbopump(s) which drive the propellant from the tanks to the thrust

chamber (Sutton and Biblarz, 2016). The exhausts from the gas generator are exhausted

through a separate nozzle, or blown down along the main nozzle. However, the gas-

generator contribution to the thrust is infinitesimal, the efficiency is reduced while

allowing higher chamber pressures. Tap-off cycle is another engine cycle in which

the hot combustion products from the thrust chamber are re-routed upstream to drive

the turbopump (Sutton and Biblarz, 2016).

Expander cycles are sometimes preferred for upper stage LPREs with cryogenic

propellants (Sutton, 2005). Propellants at cryogenic temperatures are used to cool the

walls of the thrust chamber. In the process, the propellants absorbs heat, vaporize,

expand and are used to drive the turbopump(s). In this cycle, the limited heat absorption

constrains the operational envelope of the engine.

To maximize the Isp of LPREs, staged combustion cycles are sought. In staged

combustion cycles, fuel or oxidizer rich mixture is burned in a preburner to drive the

turbopumps at high pressures (Sutton and Biblarz, 2016). The entire fuel or oxidizer
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rich exhaust is fed directly into the main combustion chamber where the balance fuel

or oxidizer undergoes combustion. Staged cycles permit very high chamber pressures

and efficiency. Another variant of staged combustion cycle is the full flow staged

combustion cycles where both the fuel rich and oxidizer rich mixtures are burned

separately in two preburners to drive the fuel and oxygen turbopumps, respectively. This

cycle guarantees a slightly higher efficiency than the partially staged combustion cycle.

Generally, developing LPREs based on staged combustion cycles are more challenging

when compared to other engine cycles because it warrants specific expertise in high

temperature metallurgy and turbomachinery. Moreover, thermal management becomes

more difficult in staged combustion LPREs.

Several other advanced engine cycles exist for LPREs (Manski et al., 1998). The

selection of a proper engine cycle is based on a variety of factors such as the thrust

desired, the propellant combination, the weight limitations etc. Irrespective of the

engine cycle chosen, the risk of occurrence of thermoacoustic instability is ever-present.

1.2 CLASSIFICATION OF COMBUSTION INSTABILITY

Combustion instabilities are known to occur in a wide variety of forms and arises from

the interaction between the acoustic, hydrodynamic and combustion processes in the

engine. The mechanism behind combustion instabilities can be related to the acoustics,

coherent structures in the flow field, hydrodynamic instabilities, shocks, intrinsic flame

instabilities, flame blowout and flame blowoff1 (Williams, 2018; Lieuwen, 2012).

Sometimes, the interaction between more than one of the aforementioned factors might

lead to the emergence of combustion instability. Apart from these factors, system

induced behaviors such as feed system and structure interactions can also result in

combustion instability.

The conventional practice in the LPRE industry is to classify combustion instabilities

1Flame blowout occurs when the flame cannot be stabilized as a result of the equivalence ratio being
varied beyond the flammability limits. Flame blowoff is referred to the extinguishment of flame as a
result of the high-speed flow quenching the flame.
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into two types - smooth and rough combustion (Heister et al., 2019). When the ratio of

the amplitude of the chamber pressure fluctuations to the mean chamber pressure exceed

5%, it is termed as rough combustion. If the obtained ratio is under 5%, combustion

is considered smooth. General practice states that smooth combustion is acceptable

whereas rough combustion necessitates dedicated tests on the LPRE stability. There

are instances of the amplitude of the chamber pressure fluctuations exceeding even the

mean chamber pressure (which is generally of the order of tens to hundreds of bars)

(Anderson and Yang, 1995; Harrje and Reardon, 1972). Hence, analyzing combustion

instability during the development of an LPRE became a norm for the rocket industry.

Depending on the frequency of the oscillations in the LPRE, combustion instability can

be classified into three types (Sutton and Biblarz, 2016).

(a) Chug or POGO instability: This instability is generally associated with oscillation
frequencies between 10 and 300 Hz. The interaction of the bulk propellant flow
with the structural modes of the propellant feed system (or even the entire launch
vehicle) leads to self-excited longitudinal oscillations in the propellant flow rates.
In turn, large thrust variations are produced imparting dangerous cyclic loads on
the launch vehicle structure. Such vibrational loads on the launch vehicle can
exceed the permissible level and lead to failures. Propellant pump cavitation, gas
entrapment in the feed lines and fluctuations in the propellant tank pressurization
systems can also exacerbate chug instability. Due to its striking similarity with
the oscillatory motion of a POGO jumping stick, it is also referred to as POGO
instability. These oscillations are usually suppressed either by incorporating
bellows or POGO damping devices in the propellant feed lines (Sutton and
Biblarz, 2016).

(b) Buzz: This type of instability is characterized by frequencies lying between 300
Hz and 1000 Hz. It arises from the establishment of acoustic resonances with
the injector manifold, thrust chamber assembly and underlying flow turbulence
rendering its characteristic buzzing sound. Buzz is overcome by incorporating
minor modifications to the injector geometry and arrangement, thrust chamber
geometry, changing stiffness of the affected components in the LPRE.

(c) Screech or scream: The oscillation frequencies of this type of instability ranges
from 1 kHz to 20 kHz. Nearly all LPREs encounter screech instability during
their development stage. The emergence of screech instability is attributed to the
interaction between the combustion process, shock waves and chamber acoustics.
The occurrence of screech rapidly increases the heat transfer and causes high-
frequency chamber pressure oscillations. In certain cases, the amplitude of these
high-frequency oscillations even exceed the mean chamber pressure (Oefelein
and Yang, 1993). Since the vibrational energy is proportional to the frequency
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of oscillations, the occurrence of screech for even a small time interval can
lead to disastrous explosions and engine failure. Therefore, screech is not
desirable during any mode of engine operation including the startup and shutdown
sequences. Out of the three types, screech instability is the most difficult to
diagnose and solve. As a result, a number of static tests have to be performed
before qualifying the LPRE for flight. Suppression of screech instability involves
major modifications of the thrust chamber geometry, cooling jackets, change of
oxidizer and fuel combination, changes to the temperature of propellants prior to
entering combustion chamber, incorporating baffles, Helmholtz resonators etc.

It must be noted that the frequency range might overlap for the aforementioned three

types. Moreover, more than one of these instabilities can coexist (Lorente et al., 2018).

The understanding of high-frequency thermoacoustic instabilities is of interest in this

thesis.

Depending on the direction of acoustic wave propagation, the obtained high-frequency

thermoacoustic instability can be further classified into at least two modes – longitudinal

and transverse. In the longitudinal mode, the acoustic wave propagates along the

flow direction and reflects off the boundaries imposed by the converging nozzle

section and the injector face. Variations in thrust generated by the LPRE is the main

problem associated with the occurrence of high-frequency thermoacoustic instability at

longitudinal modes.

Transverse acoustic waves propagate perpendicular to the main flow direction (i.e.,

perpendicular to the chamber injector face). Transverse modes can occur in three forms

– radial, tangential or their combination. The acoustic pressure and velocity profiles

for the common transverse modes are shown in Fig. 1.3. In a radial mode, the acoustic

waves are reflected off the walls of the thrust chamber. However, in a tangential mode,

the acoustic waveform can be either a standing wave or a traveling wave. A standing

tangential wave mode remains fixed in space while the amplitude of the wave fluctuates

(in time). In a spinning tangential wave, both the amplitude as well as the position of

the nodes (and antinodes) vary. Transverse thermoacoustic instability entails excessive

heat transfer to the thrust chamber walls and are particularly damaging to the injector

(Govaert et al., 2021). Accounts of melting of the injector heads due to enhanced heat
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transfer from the transverse thermoacoustic instabilities in the space shuttle main engine

(SSME) and its consequences are well-known in LPRE literature (Anderson and Yang,

1995; Oefelein and Yang, 1993).

High-frequency thermoacoustic instability can also materialize as a combination of

the longitudinal and transverse modes. The expected frequencies associated with

each of these various modes can be calculated theoretically. However, the calculated

frequencies and the observed frequencies might be off by a few hundred Hz due to

the complex boundary conditions (Poinsot, 2017), temperature gradients (Sujith et al.,

1995), and acoustic losses (Poinsot, 2017) in the LPRE.

1.3 HISTORICAL OVERVIEW OF THERMOACOUSTIC INSTABILITY

The first known occurrence of thermoacoustic instability dates back to the late

eighteenth century. In 1777, Higgins observed the production of sound identified by

Fig. 1.3: Schematic diagrams of the acoustic pressure and velocity mode shapes for
the common transverse modes found in LPREs. Reproduced from Harrje and
Reardon (1972) (allowed for public use).
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a clear tonal frequency when a vertical glass tube, closed at the upper end, was lowered

into a hydrogen flame. In 1850, Sondhauss conjectured a relation between the time

period of oscillations and the geometry of the apparatus. However, he could not provide

a convincing explanation for the production of sound. Soon, in 1859, Rijke performed

experiments in a vertical tube containing a metallic gauze in its lower end. Both the

ends of the vertical tube were open to the atmosphere. When, the gauze was heated

from below, he heard a clearly distinguishable tonal sound. He conceived that the

production of sound was related to the upward draught created by the buoyant forces

acting on the air flow within the duct. This explanation also failed to be convincing.

Finally, Rayleigh (1878) proposed the following criteria which is necessary for the

establishment of thermoacoustic instability.

“If the heat be periodically communicated to, and abstracted from, a mass of air

vibrating (for example) in a cylinder bounded by a piston, the effect produced will

depend upon the phase of the vibration at which the transfer of heat takes place. If

heat be given to the air at the moment of greatest condensation, or taken from it at the

moment of greatest rarefaction, the vibration is encouraged. On the other hand, if heat

be given at the moment of greatest rarefaction, or abstracted at the moment of greatest

condensation, the vibration is discouraged. ”

This criteria has stood the test of time and has been the mantra for researchers studying

thermoacoustic instability. Putnam and Dennis (1956), and Chu (1965) mathematically

expressed the condition for the growth or decay of the oscillations according to Rayleigh

criterion as,

∫
V–

∫ T

0

p′q̇′ dt


> acoustic losses, oscillations grow

< acoustic losses, oscillations decay

= acoustic losses, no effect on the oscillations.

(1.3)

Here, p′ is the acoustic pressure fluctuation as measured at the flame, q̇′ is the heat

release rate fluctuations, T is the time period of oscillation, and V– is the integration
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volume over the combustion zone. It is important to note that the oscillations grow

only when the thermoacoustic driving exceeds the losses through acoustic damping.

Addition or removal of heat at the point of mean pressure will change only the frequency

of the oscillation. For example, adding (or removing) heat a quarter-period before a

pressure peak will increase (or decrease) the oscillation frequency. However, adding

(or removing) sufficient heat a quarter-period after a pressure peak will decrease (or

increase) the oscillation frequency. Heat addition (or removal) at any other phase will

cause a combination of amplitude and frequency change on the oscillations.

However, the Rayleigh criterion does not account for the mean flow which plays a

crucial role in determining the extent of coupling between the acoustic and combustion

processes. As a result, other general criteria have been developed considering the effect

of mean flow (Cantrell and Hart, 1964; Morfey, 1971; Myers, 1991), and fluctuations

in temperature (Chu, 1965; Nicoud and Poinsot, 2005) and concentration (Brear et al.,

2012). Despite such progress, an accurate criterion for the occurrence of thermoacoustic

instability remains unaccomplished.

1.3.1 Thermoacoustic instabilities in LPREs

The breathtaking advances in the first half of the twentieth century ushered the age of

jet and rocket propulsion. Until 1940s, LPREs development was led by amateur rocket

societies, some well-funded teams located mostly in the Germany, Soviet Union and the

United States (Sutton, 2005). The development of LPREs was strife with spectacular

failures. Some of these failures were attributed to the occurrence of thermoacoustic

instability. Soon, the development of LPREs were considered a national priority and

became an industrial effort with substantial funding. Special expert committees were

assigned to investigate the causes and means to overcome these failures (Sutton, 2005).

The LPRE which powered the V-2 missile developed by the Germans during the

second world war was originally devised for a liquid oxygen (LOx) and alcohol

combination. Due to the notorious combustion instability encountered during
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the development, the Germans switched the fuel to a mixture of kerosene and

unsymmetrical dimethylhydrazine (Sutton, 2005).

In the erstwhile Soviet Union, from the 1940s, high-frequency thermoacoustic

instability was encountered during the development of LPREs such as NK-33, RD-

107, RD-108, RD-110, RD-111, RD-170 and RD-270 (Dranovsky, 2007; Natanzon,

2008; Anderson and Yang, 1995). Significant efforts were required to control the

thermoacoustic instabilities resulting in development delays and project revisions. It

even led to the cancellation of several projects and planned missions.

The United States encountered high-frequency thermoacoustic instability during the

development of H-1 LPRE, booster engines (Thor, Atlas), lunar ascent LPREs and

space shuttle main engine (Sutton, 2005; Anderson and Yang, 1995). Perhaps, the most

famous history related to thermoacoustic instability is attributed to the development of

the F-1 engine which powered the Apollo missions.

In mid 1962, an F-1 engine was destroyed during the course of a test planned under the

Apollo manned lunar mission (Oefelein and Yang, 1993). Saverio "Sonny" F. Morea,

the F-1 engine development project manager remarked "It was a disaster because once

we had that instability, it would burn through the thrust chamber in milliseconds. The

hardware went all over the place", "combustion instability was the biggest problem I

ever had in my entire career" and "if we didn’t come up with a solution, we weren’t

going to the Moon" (NASA’s Marshall Space Flight Center, 2019).

The catastrophic failure was quickly identified to be a direct consequence of high-

frequency thermoacoustic instability inside the combustion chamber. The timing of

this setback and the political pressure associated with the space race at that time set of a

series of events which propelled combustion instability into popular usage. Special

committees were formed to investigate thermoacoustic instability. The committee

studied previous recorded occurrences of thermoacoustic instability on large LPREs. It

took 1332 full-scale hot-fire tests, 108 injector design changes, close to forty million

dollars, and a better part of four years to suppress this thermoacoustic instability
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Fig. 1.4: Cutaway sketch of a thrust chamber with baffles installed at the injector face.
Reproduced from Harrje and Reardon (1972) (allowed for public use).

(Oefelein and Yang, 1993; Morea and Johnson, 2012). The stability fix involved a

baffle and a revised injector distribution. However, this improvement in stability came

at a 4% reduction in combustion efficiency (Oefelein and Yang, 1993).

A cutaway sketch of a thrust chamber with baffles installed in the injector face is shown

in Fig. 1.4. The baffle is usually a set of protruding element from the injector face

designed to arrest tangential thermoacoustic oscillations. Some of the injector holes

are present on the baffle plate. Essentially, the baffle compartmentalizes combustion

oscillations and arrests the growth of tangential oscillations. Nearly 14 different

baffle configurations were studied. The selected configuration was so stable that it

would damp out the artificially induced thermoacoustic instability within one-tenth of

a second. Since the understanding of high-frequency thermoacoustic instabilities was

incomplete at that time, this whole process involved exorbitant amounts of money and

significantly delayed the mission. The development of RS-25 LPRE (popularly known

as the space shuttle main engine) was also marred by issues pertaining to combustion

instability.

Shortly after liftoff in May 1980, one of the Viking engines in the first stage of
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the Ariane 1 launch vehicle encountered combustion instability leading to explosive

mission failure. Modifications to the injector geometry and change of fuel were

necessary to remedy the thermoacoustic instability (Souchier et al., 1999). During the

development of Aestus LPRE which powered the upper stages of the Ariane 5 launch

vehicle, high-frequency thermoacoustic instability was encountered during startup, full

thrust and shutdown operations (Langel et al., 1991). Laborious changes to the injector

design and ignition characteristics were necessary to manage the thermoacoustic

instability.

The Japanese LE-5B and LE-9 LPREs suffered from combustion instability (Fukushima

et al., 2002; Watanabe et al., 2016). China also faced problems due to combustion

instability in its YF-1, YF-2, YF-20 and YF - 100 (Sutton, 2005). For India’s SCE-

200 engine, which is under development, combustion stability assessment is one of the

crucial evaluations (Kanthasamy et al., 2014). Even now, it is challenging to identify

the root causes behind the emergence of thermoacoustic instabilities and fixes required

to suppress them in modern LPREs.

1.3.2 Measurements in an LPRE

In the early days, accelerometers and fast-response pressure transducers have been

used to sense the high-frequency thermoacoustic instability (Harrje and Reardon,

1972). Acceloremeters capture the acceleration originating from the vibrations of

the combustion chamber walls. Since the obtained measurements are coupled with

the structural resonances of the LPRE, accelerometer data need not match with the

pressure measurements. Moreover, the complex nature of the structural coupling

makes it difficult to determine the extent of combustion oscillations in the LPRE

and at best can be only considered as an indirect measurement of thermoacoustic

instability. Thermocouples can monitor the temperature at the chamber walls and of the

working fluid. However, due to the slow (relative to the acoustics and combustion) heat

transfer process, temperature data from thermocouples can only be acquired at lower
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sampling rates. As a result, thermocouple measurements do not provide meaningful

measurements to interpret the high-frequency thermoacoustic instability.

Therefore, fast response pressure sensors are preferred to characterize the nature

of combustion oscillations in an LPRE. The pressure sensors come in two types

- piezoresistive and piezoelectric. The piezoresistive type transducers provides the

absolute pressure unlike the piezoelectric type transducers which sense only the

fluctuations about the mean pressure. Therefore, piezoresistive pressure transducers

remain the first choice measurements in rocket combustors.

1.3.3 Rating techniques to quantify stability of LPREs

To quantify the stability of an LPRE, several combustion stability rating techniques

were considered. The popular method involved forced excitation of pressure

oscillations using directional explosive charges (Anderson and Yang, 1995; Harrje

and Reardon, 1972). Directional explosive charges ensure that only the specific

longitudinal or transverse mode gets excited. Detonating the explosive charge produces

large amplitude pressure surges in the intended direction. Then, using precise high-

frequency pressure measurements, the time taken to damp out the excited perturbation

is quantified. Stability of the LPRE was guaranteed by a rapid decay in the amplitude of

the oscillation. The rate of decay was roughly used as measure to quantify the inherent

stability of the LPRE.

Another popular rating method in Russia is the method of oscillation decrement. It was

a mandatory method to characterize injector configurations in the RD-170 and RD-180

LPREs (Dranovsky, 2007). Oscillation decrement is essentially the autocorrelation of

the signal. In this method, the signal is compared to its time delayed copies. The rate

of decay of autocorrelation is then used to define a damping rate which quantified the

stability of the LPRE. The advantage of this method is that it is a passive method and

does not require artificially induced disturbances.

For any LPRE, the stability rating techniques can then be used to map the stability
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boundaries. A typical stability boundary map is compiled for a range of testable

control parameters such as chamber pressure, mixture (i.e., oxidizer to fuel) ratio, and

throttling level. Such a stability map enables quantification of the stability margin (i.e.,

the proximity to thermoacoustic instability) for any given combination of operating

conditions. An LPRE prone to thermoacoustic instability has large portions of the

stability map deemed unstable. In such scenarios, it is desirable to understand the root

cause of thermoacoustic instability and then perform appropriate modifications.

1.4 WHAT CAUSES HIGH-FREQUENCY THERMOACOUSTIC

INSTABILITY IN ROCKET ENGINES?

Understanding the mechanisms that drive and sustain thermoacoustic instabilities will

be helpful in several ways. It would greatly reduce the expensive testing, help in

modelling and validating high-fidelity simulations, and may even prescribe design

methodologies. Moreover, tailored control strategies can be engineered into the LPRE

which inhibit the mechanisms driving high-frequency thermoacoustic instability.

The understanding of high-frequency thermoacoustic instability in LPREs requires a

thorough knowledge of the combustion processes, the turbulent flow and the acoustics

of the thrust chamber. The fundamental steps for combustion in an LPRE is governed

by atomization, vaporization, mixing and diffusion, reaction processes. The injection

pattern, chamber pressure, geometry of the thrust chamber, level of turbulence, the

mixture ratio, film cooling, thermal and the acoustic boundary conditions determine the

combustion stability characteristics of the LPRE.

One of the first authoritative works on the understanding of the high-frequency

thermoacoustic instabilities in LPREs is the compilation by Harrje and Reardon

(1972). The influence of thrust chamber and injector geometry, propellant

evaporation and mixing characteristics, and their connection to the occurrence of

thermoacoustic instabilities were summarized. Analytical methods to model high-

frequency thermoacoustic instabilities, methodologies to characterize the stability of
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LPREs, and design philosophies to ensure the stability of LPREs are also described. In

another landmark compilation by Anderson and Yang (1995), the sensitive dependence

of mixture ratio (i.e., the ratio of fuel and oxidizer mass flow rates), momentum flux

ratio, temperature of propellants, and chamber pressure on the combustion stability

characteristics were understood. Case studies of thermoacoustic instability phenomena

in several flight-proven LPREs were also discussed. Later, Culick and Kuentzmann

(2006) summarized the mechanisms exciting thermoacoustic instabilities and bulk flow

instabilities and the numerical models used.

The unique Soviet practices followed in the diagnosis and management of

thermoacoustic instabilities have been summarized by Dranovsky (2007) and Natanzon

(2008). Recently, Sirignano (2015) reviewed the driving mechanisms leading to

thermoacoustic instabilities in LPREs. First, he elaborately summarized the literature

of analytical models used in rocket combustors. Then, he developed a nonlinear wave

equation model for handling two-phase flows typical in combustors of LPREs. The role

of shock wave in determining the amplitude during limit cycle oscillations was also

shown to be related to the mean-flow Mach number.

1.4.1 Theoretical and analytical studies on high-frequency thermoacoustic

instability

Until the late twentieth century, high-speed sophisticated instrumentation on LPREs

were not possible. As a result, engineers relied mainly on limited data acquired from

tests and empirical relationships between variables to characterize the high-frequency

thermoacoustic instabilities.

Sensitive time lag theory

After the introduction of the Rayleigh criterion, the subsequent exciting development

on the understanding of thermoacoustic phenomena came in the 1950s. It is well-

known that combustion oscillations are affected by the acoustic pressure perturbations

in the combustor through various chemical and fluid mechanical pathways. Since the
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combustion processes encompass multiple time and length scales arising from injection,

atomization, vaporization, transport, and turbulence, it is essentially impractical to

model each of these individual processes accurately to understand the interaction

between combustion, acoustic, and flow processes in an LPRE. Professor Luigi Crocco

(1951, 1952) introduced the classic sensitive time-lag theory (also known as n-τ model),

which essentially bypassed the treatment of the various length and time scales involved

in the combustion processes. This theory was concurrently developed by several others

as reflected in the works of Summerfield (1951); Tsien (1952); Marble and Cox Jr

(1953); Crocco and Cheng (1956).

Here, all the combustion and fluid mechanical processes are encapsulated in two

parameters: a positive amplification factor (n) and a time delay (τ ), which are selected

based on the propellant, injector design, and oscillation frequency in the LPRE. The

time delay τ dictated whether the oscillations would grow or decay, while n dictated

the growth (or decay) rate. Then, the heat release rate oscillations (q̇′) and acoustic

pressure perturbations (p′) are related as q̇′ = np′(t − τ). Under certain conditions,

the perturbations in the heat release rate oscillations could feedback into the pressure,

thus strengthening the positive feedback loop. In turn, this led to the emergence of self-

sustaining high amplitude periodic pressure oscillations in the combustion chamber.

The n-τ model was first shown to work reasonably well for longitudinal thermoacoustic

instability (Crocco and Cheng, 1956). Later, for transverse thermoacoustic instability,

Reardon et al. (1964) showed that flow velocity had a stronger effect on the atomization,

vaporization, and mixing processes. Therefore, the heat release rate and subsequent

time lag need to be coupled with both the acoustic pressure and flow velocity for the

n-τ model to work. In essence, the n-τ model paved the way of simple reduced order

models which do not deal explicitly with each physical processes in the LPRE.
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Reduced order models based on linear theory

Studies based on linearized wave equations for simplified geometries allow reduced

computational effort. Combustion is incorporated into the wave equation as a source

term either using response functions or variants of n-τ model or empirical relations

(Harrje and Reardon, 1972). The acoustic pressure is extracted directly by solving the

wave equation for its eigenmodes and eigenfrequencies. Further, if the analytical mode

shapes are known a priori, the spatial and temporal solution can be split using separation

of variables. Then, the wave equation can be written as an ordinary differential equation

in time and can be solved using the Euler or the Runge – Kutta methods (Harrje and

Reardon, 1972). Following this linear stability analysis is effective to predict only

the initial growth rate. Beyond the initial growth phase, thermoacoustic instability

is predicted to have an unbounded growth. However, in reality, the growth rate of

oscillations beyond a certain amplitude is limited by nonlinear processes.

Nonlinear effects

Rocket combustion is essentially a highly nonlinear and dynamic process. The

nonlinearities may arise out of gas dynamic processes, flame interactions, boundary

interactions, high thermal energy density (O ∼ 30 GW/m3), and the turbulent base

flow (Culick and Kuentzmann, 2006; Lieuwen, 2012). Further, extreme rates of heat

addition in rockets is a major source of nonlinearities in rockets. The magnitudes of

the oscillations of the system variables and acoustic variables approach the order of

magnitude of the mean variables. As a consequence, the nonlinearities in the system

become significant and promote the transfer of energy across higher modes. The

turbulent base flow induces wrinkles along the flame boundaries which are smoothed

out at different rates depending on their length scales. The presence of flow separation at

sharp edges, rapid flow expansions and interaction of the acoustic oscillations with the

coherent structures in the reactive flow-field add upon the nonlinearities in the system

(Fabignon et al., 2003; Messineo et al., 2016). Further, the wave steepening mechanism
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causes acoustic waves to turn into shock waves (Hirschberg et al., 1996; Flandro et al.,

2007). The usage of nonlinear theory correctly predicts the saw-tooth wave profiles in

pressure for cases containing shock discontinuities, while linear theory predicts smooth

sinusoidal waveforms (Tyagi and Sujith, 2003a,b; Sirignano, 2015).

Chester (1964) investigated the conditions required for the occurrence of flow

discontinuities in the form of shock waves in a closed duct using a rigorous gas

dynamics framework. Inspired by the experimental work of Saenger and Hudson

(1960), he showed that the shock waves arise as the natural solution for frequencies

close to the resonant frequency since the nonlinear terms from acoustics, viscosity and

heat conduction become significant. Further, he showed the effects of bulk viscosity of

the fluid and boundary layer on the oscillations at near resonant frequencies.

On top of all these events, there exist several interactions across various subsystems

such as injector hydrodynamics and flame dynamics, rendering the system complex

(Rubin, 1966; Price, 1984; Blomshield et al., 1997; Gröning et al., 2016; Messineo

et al., 2016). Several processes occurring in rocket engines are artifacts of the

nonlinearities in the system (Blomshield et al., 1997; Flandro et al., 2007). Limit cycle

oscillations could arise due to the balance between the acoustic driving and damping

mechanisms in the system along with other limiting mechanisms like propellant flow.

A stable combustor can be excited with a finite amplitude disturbance to trigger self-

sustained oscillations of considerable amplitudes. This phenomenon is known as

triggering instabilities in rockets. During triggering, the system transitions to a state

of high amplitude oscillations through a finite amplitude perturbation above a threshold

amplitude, called triggering amplitude. When the amplitude of the initial condition is

less than the triggering amplitude, the system behavior decays asymptotically to a stable

state. The phenomenon of triggering is observed when the system is operating in the

bistable zone (Jegadeesan and Sujith, 2013).

In rocket engines, the time history of acoustic pressure oscillations is usually

accompanied by a rise in the mean pressure levels. This phenomenon, known as DC
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shift (etymology is linked with the analogy with electrical science) exposes the rocket to

dangerous amplitudes (Flandro et al., 2007). As a result of these nonlinear behaviors, it

is vital to understand the dynamics exhibited by a rocket combustor from the perspective

of nonlinear dynamics.

In order to understand limit cycle and triggering behaviors, it is essential to overcome

the shortcomings of the linear methods. The deficiencies of linear methods for studying

thermoacoustic instability was identified by the early pioneers. They presciently

predicted that a true understanding of the onset and sustenance of thermoacoustic

instability is possible by embracing the nonlinear analysis methods.

The sensitive time lag theory was extended to nonlinear analyses using a perturbation

series in amplitude (Sirignano, 1964; Mitchell et al., 1969; Zinn, 1968). Zinn and

Powell (1971); Zinn and Lores (1971) introduced the Galerkin method for nonlinear

oscillations into the time-lag theory. They were able to achieve a reasonable agreement

with the experimental data limited to low Mach number flows.

Later, Jahnke and Culick (1994) introduced dynamical systems theory to study the

limit cycle behavior and estimated the stability boundaries using time averaging

methods. The complexities of the nonlinear equations necessitated the usage of

several approximations and assumptions. The chosen approximations, assumptions,

number of modes and the degree of nonlinearity considered had a large impact on the

prediction (Culick, 1994). So far, most of the studies have emphasised only the acoustic

nonlinearities. It is difficult to faithfully capture the nonlinear aspects of combustion

processes. This problem has been circumvent largely by relying on time-lag models.

1.4.2 Experimental studies on high-frequency thermoacoustic instability

From the turn of this century, the ability to perform sophisticated experiments at high-

pressure and high-temperature environments along with the advances in high-speed

instrumentation and imaging technology have enabled us to focus on understanding the

fundamental processes controlling thermoacoustic instabilities in LPREs. Experiments
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in model combustors comprising a single or an array of injection elements have

provided great insights into the combustion and flow processes. These experiments

have enhanced our knowledge of the influence of injector geometry (specifically,

shear coaxial versus pintle injector types), and the coupled interaction between

the combustion processes and the acoustic field under longitudinal and transverse

excitation. Moreover, such configurations are amenable to high-fidelity simulations

and reduced-order modeling. The thermoacoustic instabilities in these experiments are

either forced through external means or self-excited.

Further, if the pressure or temperature of the propellant exceeds the critical point,

their properties vary substantially. In an LPRE, the propellants can be injected into

the combustor in either the subcritical or transcritical or supercritical states (Heister

et al., 2019; Sardeshmukh et al., 2020). Most of the first stage LPREs operate in

the supercritical or transcritical regimes whereas upper stage LPREs operate under

subcritical conditions. Therefore, it is important to understand the dynamics across

all these pressures and temperatures. Performing experiments at transcritical and

supercritical conditions became feasible only recently (Davis and Chehroudi, 2007).

Forced systems

Even though combustion instability is often encountered in full-scale LPREs, it is

difficult to spontaneously excite thermoacoustic oscillations in subscale laboratory

combustors. As a result, we have to artificially initiate thermoacoustic instability using

devices which impart sufficient amplitude perturbations into the combustor. So far,

acoustic speakers, directional explosive charges (or bombs), pulse guns, sirens and

rotary actuators have been used. Out of these methods, explosive charges and pulse

guns can be scaled to be used to excite only the natural acoustic modes of the combustor.

Moreover, these two methods can be scaled and installed in even full-scale combustors.

However, sirens and rotary actuators cannot be used in full-scale combustors but can be

used to sweep through a range of frequencies apart from the natural acoustic modes of
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the combustor.

In a 9 bar LOx/CH4 combustor, Richecoeur et al. (2006) continuously forced the

flow rate at the transverse frequencies of the combustor with a periodically obstructed

secondary nozzle. They suggested that at certain operating conditions, the shear regions

of neighboring jet flames collide to enhance the atomization and mixing of propellants,

leading to an increase in the intensity of heat release rate oscillations. Further, they

reported a strong coupling between the high-frequency transverse acoustic pressure and

the OH* chemiluminescence with a concomitant increase in flame-spread and flame

intensities. However, the excited pressure amplitudes from this flame-flame interactions

were only about 8% of the mean chamber pressure.

Later, Méry et al. (2013) increased the mean chamber pressure to ∼ 60 bar and excited

higher amplitudes by modulating the entire flow rate through two nozzles at the exit of

the same combustor to obtain oscillation amplitudes close to 20% of the mean chamber

pressure. For high levels of oscillation amplitudes, they reported that the smaller

droplets closely follow the transverse acoustic velocity while their vaporization and

eventual heat release rate follows the transverse acoustic pressure.

In a warm oxygen/kerosene model rocket combustor with a single coaxial injector,

Miller et al. (2007) varied the length of the combustion chamber to excite longitudinal

thermoacoustic instabilities. Since thermoacoustic instability was observed only for a

range of lengths, they hypothesized that the spatiotemporally varying heat release rate

couples with the acoustics to select the most amplified mode.

Successive studies were performed in DLR’s 40-60 bar BKH combustor based on

LOx/H2 propellants by modulating the exhaust through the secondary nozzle in the

combustor (Hardi et al., 2014a). The length of the LOx core length as well as its

fluctuations were shown to decrease for increasing oscillation amplitudes (Hardi et al.,

2014b). The transverse acoustic velocity was reported to play a primary role in the

shortening of the flame jet. The transverse acoustic pressure oscillations was found to

be in-phase with the OH* emission intensity (Hardi et al., 2014a).
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Continuously varying the length of the oxidizer post, Yu et al. (2012) observed stable

to unstable to stable transitions in a single-element H2O2/JP− 8 combustor. Later,

they detected that the relative timing between the vortex pulse determined by the

compression wave in the post and its interaction with the chamber acoustic compression

wave controlled the occurrence of thermoacoustic instability (Harvazinski et al., 2015).

Self-excited systems

Self-excited thermoacoustic instabilities are observed in several full-scale LPREs

and some carefully designed subscale rocket combustors. Studying thermoacoustic

instabilities in such spontaneously self-excited combustors is desirable since the actual

mechanisms exciting the high amplitudes will be revealed without any artifact from the

external forcing.

In a 14 bar LOx/kersone combustor with triplet impinging jet injectors, Sohn et al.

(2007) showed that the onset of self-excited oscillations depend on the correlation

between the characteristic burning or mixing timescale with the acoustic timescale.

Nunome et al. (2011) studied the effect of cryogenic hydrogen injection temperature on

the stability of a LOx/LH2 combustor for five different coaxial injector configurations.

They reported the occurrence of unstable combustion when the hydrogen injection

temperature was lowered below 50 K.

In DLR’s 42 injector LOx/H2 BKD combustor, a series of investigations were

performed to study self-excited thermoacoustic instabilities. It was shown that the

ratio of oxidizer to fuel flow rate and hydrogen injection temperature had a stronger

effect on the chamber acoustic frequencies than the chamber pressure (Gröning et al.,

2013, 2014). Later, the length of the oxidizer posts was varied to study its effect on

the combustion stability. They observed that the heat release rate oscillations were

determined by the injector resonances. Maximum oscillation levels were achieved only

when the dominant acoustic pressure and the OH* intensity frequencies coincided.

Moreover, two types of thermoacoustic instability were identified. The first type is
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an injector-driven thermoacoustic instability characterized by amplitude levels around

∼ 40% of the mean chamber pressure (Gröning et al., 2016). In the second type,

amplitude levels reached up to ∼ 80% of the mean chamber pressure due to enhanced

interaction between chamber acoustics and the injector’s fundamental longitudinal

mode (Armbruster et al., 2018). Later, using dynamic mode decomposition, they

showed that the flame dynamics are strongly influenced by the LOx injector acoustics

only beyond a certain chamber pressure (Armbruster et al., 2019). They also suggested

that the periodic vortex shedding in the LOx post orifice to be the source of this

injector-driven thermoacoustic instability. Using LOx/LNG in the same combustor,

they hypothesized that the rapid displacement of the lifted jet flame might trigger

thermoacoustic instability (Martin et al., 2021).

Simultaneously at Purdue University, several studies were performed to understand

self-excited thermoacoustic instabilities in single-element and multi-element subscale

rocket combustors. In a 22 bar single-element longitudinal thermoacoustic instability

combustor, Sisco et al. (2011) concluded that injector boundary conditions had a

superior influence over the stability than other parameters such as the oxidizer tube

geometry which affected the phase lag.

In a 9 – 11 bar 2D subscale rocket combustor fed by H2O2/(JP− 8 or CH4) and

featuring an array of gas-centered shear coaxial injectors, Pomeroy and Anderson

(2016) investigated the stability characteristics for different injector flow configurations

and reported thermoacoustic amplitudes ranging from about 5% to even 100% of the

mean chamber pressure. In a 12 bar O2/CH4 single-coaxial element combustor, Lorente

et al. (2018) showed that low-frequency bulk mode oscillations can coexist with high-

frequency longitudinal oscillations depending on the oxidizer temperature.

Coupling mechanisms driving thermoacoustic instabilities

Based on the location at which the highest heat release rate oscillations are

recorded during the occurrence of thermoacoustic instability, the instability sustaining
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mechanism could be velocity coupled or pressure coupled with the resulting heat

release rate oscillations. In the velocity coupled mechanism, the jet flames near the

acoustic velocity antinode are perturbed more than the jet flames at other locations

(Rey et al., 2004; Sliphorst et al., 2011). These perturbations leads to a nonuniform

distribution of the vortices across the combustor. Eventually, a collective interaction

between the neighboring jet flames results in high heat release rate oscillations leading

to thermoacoustic instability. In the pressure coupled mechanism, the largest heat

release rate oscillations are observed at the acoustic pressure antinodes (Knapp et al.,

2007).

Probably, the injector coupling is the most commonly observed coupling mechanism

in liquid rocket engine combustors (Bazarov and Yang, 1998; Gröning et al., 2016).

While delivering propellants is the primary job of injectors, any perturbation developed

upstream of the combustor (i.e., in the feedlines, turbopumps etc.) can interact with the

dynamics in the combustion chamber. When a feedback loop is established between

the injector resonant modes and the chamber acoustics, the engine can experience an

undesirable growth in the amplitude of pressure oscillations. This leads to the state of

thermoacoustic instability.

In a continuously variable resonant combustor where the oxidizer post length can

be varied to obtain stable or unstable behavior, Harvazinski et al. (2015) showed

the coincidence in the arrival times of acoustic pressure pulses in the oxidizer post

and the combustion chamber to sustain strong cyclic variations of heat release rate

oscillations during thermoacoustic instability. Morgan et al. (2015) used dynamic

mode decomposition obtained from chemiluminescence images to show the presence

of velocity coupling for the first transverse mode and a pressure coupling for the second

transverse mode near the center of a 2D combustion chamber. Recently, Méry (2017)

showed that the transverse flame displacement mechanism is a significant contributor

to the heat release oscillations.

Apart from these aforementioned mechanisms, several other mechanisms pertaining to
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atomization and vaporization of liquid propellants (Anderson and Yang, 1995; Harrje

and Reardon, 1972), and flame-flame interactions (Richecoeur et al., 2006) have also

been reported to initiate and sustain high-frequency thermoacoustic instability in the

combustor of rocket engines.

1.4.3 State of the art - high fidelity simulations

In last two decades, the breakthroughs in computing power allowed computational

fluid dynamics (CFD) simulations to investigate combustion instability of LPREs

(Heister et al., 2019). High-fidelity simulations using unsteady Reynolds-Navier Stokes

(URANS), large eddy simulations (LES), direct numerical simulations (DNS) and

hybrid LES-RANS have been attempted. Out of these approaches, DNS provides the

most accurate simulation but is currently limited by the extensive computational costs.

It is cumbersome to compute the dynamics in each subsystem of an LPRE. Hence,

simulations based on the joint usage of a baseline flow field with an acoustic solver

and a suitable flame-response model is used (Urbano et al., 2016). Such simulations

have yielded acceptable predictions of stability maps and estimates of unstable modes

in atmospheric pressure simulations (Urbano et al., 2017). For higher pressures

approaching the critical point of the reactants, the physical properties of the reactants

vary substantially making it is difficult to predict accurately (Sardeshmukh et al., 2020).

Moreover, these simulations are reasonably accurate only when the appropriate flame

response model is known beforehand. Therefore, it would be desirable to perform

high-fidelity simulations which do not require the prior knowledge of flame response

to understand the physical mechanisms driving thermoacoustic instability (Selle et al.,

2014; Matsuyama et al., 2016). The major challenges while simulating thermoacoustic

instability in LPREs are the modeling of thermoacoustic interaction, compressibility

effects (including shock waves), resolving the wide range of spatial and temporal scales

related to the acoustic, combustion, and turbulent flow processes (Popov and Sirignano,

2016; Urbano et al., 2016), detailed chemical kinetics (Sardeshmukh et al., 2015;
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Bedard et al., 2020), turbulence-chemistry interactions (Pant et al., 2019).

Due to the coupled nonlinear interaction between the acoustic, reactive, hydrodynamic

and gas dynamic processes, any small deviation from the experiment in the CFD

simulation results in big differences in the resultant thermodynamic, chemical kinetic,

acoustic and flow variables, and therefore the resultant combustion dynamics. Hence,

it is of paramount importance to tightly validate the CFD simulation with the available

experimental data. So far, the following methodologies have been used to validate the

numerical simulations from the experimental data.

(a) Pressure signals are quantitatively compared for correct amplitudes and spectral
content (Feldman et al., 2012; Harvazinski et al., 2013b). In some cases,
the use of a three-dimensional simulation over axisymmetric simulations has
improved the match in amplitudes and frequencies (Harvazinski et al., 2013a;
Garby et al., 2013). The differences in the dominant frequencies are attributed
to the improper modeling of the boundary conditions. In experiments, the heat
loss from the walls renders non-adiabatic boundary conditions. During high-
frequency thermoacoustic instability, several harmonics are also observed along
with the fundamental dominant frequency. All the harmonics and their amplitudes
are seldom captured in simulations. Further, the sharp or broadband nature of the
peaks is compared from the width of the corresponding peak in the power spectral
density plots.

(b) Time-averaged distributions of heat release rate oscillations from
chemiluminescent radicals such as hydroxyl (OH*) and methylidyne (CH*)
are compared during stable and unstable operation. The OH*/CH* emission
intensity is measured in experiments while the simulations predict the heat
release rate. Therefore, the differences arising from the chemical kinetics model
and turbulence-chemistry interaction can be substantial during thermoacoustic
instability (Xia et al., 2011; Bedard et al., 2014; Sardeshmukh et al., 2015; Pant
et al., 2019; Hardi et al., 2016b).

(c) A dynamic comparison of the heat release rate oscillations can be performed
during stable and unstable operations (Hardi et al., 2016b; Huang et al., 2016).
Instantaneous and phase averaged images can provide suggestions on how the
deviations emerge during the course of a thermoacoustic cycle. Moreover, proper
orthogonal decomposition (POD) and dynamic mode decomposition (DMD)
techniques can be implemented to identify and compare the most energetic modes
(Huang et al., 2018). The comparison of the spatial modes from POD and DMD
might provide crucial information on the coupling between the acoustics and the
combustion processes.

The joint advances in computational power and our improved understanding of

thermoacoustic phenomenon have improved the capability to simulate combustion
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dynamics at high pressures. Simulations have also pointed out the possible mechanisms

initiating and sustaining thermoacoustic instabilities (Harvazinski et al., 2015; Urbano

et al., 2017; Pant et al., 2019).

Despite such progress, current simulations fail to capture several intricate features of

the combustion dynamics inside the combustor. As an example, consider the following

two scenarios.

(a) Two simulations might predict the same amplitudes. However, their frequency
content (i.e., the spectrum), signal waveform and associated multi-scale features
might be vastly different. As a result, one simulation might correspond
to a variant of thermoacoustic instability which can potentially be severely
dangerous whereas the other simulation might correspond to a milder variant of
thermoacoustic instability.

(b) Simulation might predict low amplitude oscillations. However, a slight
perturbation in the propellant flow rate or the acoustic pressure might tip the
system to harmful large-amplitude thermoacoustic instabilities. Therefore, it is
essential to estimate the proximity to the onset of thermoacoustic instability for
both the simulations and the experiments. Analysis of the detailed features of
the signal enables us to estimate the proximity to the onset of thermoacoustic
instability and therefore quantify the stability margin of the LPRE.

Therefore, it is imperative that the high-fidelity simulations also capture intricate

features of the steepened pressure and heat release rate waveforms, their multifractal

nature etc. Currently, there is a dearth of tools to validate such features in the numerical

datasets.

1.5 CONTROL OF THERMOACOUSTIC INSTABILITY

Thrust chambers of LPREs are designed primarily for high performance (i.e.,

high combustion efficiency). Therefore, the inherent natural damping mechanisms

are normally insufficient to arrest the growth of oscillations during the onset of

thermoacoustic instability. So far, control of thermoacoustic instability in LPREs

is largely an acquired art, leveraging on prior experiences and inherited company

knowledge amassed over years of LPRE development and testing. Once a failure due

to thermoacoustic instability is recorded during the testing of an LPRE, a series of steps

are usually performed before performing a modification to the LPRE (Kitsche, 2010).
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The engineer analyzes the recorded pressure and temperature data acquired from

various locations within the LPRE. Simultaneously, high-speed video data of the rocket

exhaust plume out of the nozzle obtained from the test stand is also analyzed. Post the

test, the LPRE is disassembled. Then, the engineer(s) performs a visual inspection of

the various components of the LPRE, comparing it with the images of the corresponding

component obtained prior to the test. This exercise helps us to identify the component

or subsystem which led to the failure. Based on the obtained knowledge from the

visual inspection as well as the analysis of the acquired measurements from the LPRE,

the engineer evaluates different ways to suppress the amplitude during thermoacoustic

instability.

Early investigators used to suppress the ruinously large amplitude oscillations by

making elaborate changes to the geometry of the thrust chamber (length or diameter)

which significantly hampered the LPRE performance. Advances in computer modelling

enables a fairly accurate estimation of the natural acoustic frequencies (fundamental

modes and its harmonics) for a given geometry. This allows the design of the LPRE

to be modified so that the natural acoustic frequencies of the thrust chamber do not

coincide with that of the injector and other combustion specific frequencies. In some

cases, the change in propellant combination was found to reduce the amplitude of

the high-frequency thermoacoustic oscillations (Sutton, 2005). When thermoacoustic

instabilities are identified late into the development, such comprehensive changes to the

LPRE are not feasible.

The size, type and arrangement of the injector elements on the injector plate are found

to play a significant role in the combustion dynamics (Harrje and Reardon, 1972).

American and Soviet LPREs followed different philosophies while designing injector

elements (Sutton, 2005). American designs relied heavily on jet impingement to

atomize and achieve the desired mixture ratio, whereas Soviet designs used spray nozzle

elements. Combined modifications to the flow, swirl and the placement of injectors in

the thrust chamber in combination with the injector type were necessary to suppress
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the oscillations. In some cases, an increase in the injection pressure or the injection

velocity have helped to manage the amplitude found during thermoacoustic instability.

In certain situations, an increase or decrease in the depth of the injection holes have

found to work (Sutton, 2005).

When the encountered thermoacoustic instability corresponds to a tangential or radial

mode, using metal baffles is found to be a reliable solution. First developed by Soviets

(Sutton, 2005), this method allows retrofitting of baffles on top of the injector plate

(see Fig. 1.4). Further modifications such as injecting cold propellants to reduce the

thermal damage imposed by transverse oscillations and using step baffles to distribute

the regions exhibiting intense heat release rate oscillations have also been performed.

The usage of baffles reduces the usable volume for combustion in the thrust chamber.

So, the stability enhancement from baffles usually comes with a slight performance

penalty. However, there have been records of cases in which the baffles have aggravated

or not affected the combustion stability (Oefelein and Yang, 1993).

Another solution developed by the Americans is the usage of acoustic resonance cavities

near the head end of the thrust chamber. These carefully designed cavities absorb the

acoustic oscillations at certain acoustic frequencies, thus continuously suppressing the

pressure oscillations in the thrust chamber. Many Soviet LPREs do not use either baffles

or acoustic resonance cavities, but rely on proven shear coaxial injection elements to

ensure stable combustion operation. Usually, a combination of the above solutions is

implemented to control the thermoacoustic oscillations in the LPRE. In some cases,

implementing some of these control solutions have been found to be counterproductive

and have even exacerbated the thermoacoustic instabilities (Armbruster et al., 2020).

Further, depending on whether the thermoacoustic instability is encountered during

startup, shutdown, throttling or full thrust operation, specific control solutions are

devised. If the thermoacoustic instability is encountered only during the start transience,

a change in the start sequence or usage of a crucible baffle is found to be a good remedy.

The crucible baffle melts away after the start transience. In spite of the knowledge of
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these control remedies, there exists no handbook or universally adopted prescription or

methodology to make the changes to LPRE operation.

Recently, the development of high-speed measurement techniques has enabled

simultaneous experimental works concerning control methods to suppress

thermoacoustic instabilities. For example, Armbruster et al. (2020) devised a

novel damping method to suppress injector-driven thermoacoustic oscillations. In

this method, acoustic resonators tuned to injector acoustic modes can be retrofitted to

existing LPREs.

In recent years, the progress of high fidelity simulations has served as an intermediate

step to validate changes to the LPRE and predetermine the associated performance

loss or gains. Once a design modification is approved, a series of tests at transient,

steady-state, and mission-specific operating conditions must be carried out on subscale

and subsequently full-scale versions of the LPRE. Our improved knowledge of

thermoacoustic instability in an LPRE, amassed over the last century, has helped reduce

the number of tests for certifying an LPRE.

Apart from the aforementioned passive control strategies, active control methods have

also been developed. Active control techniques uses a feedback loop to nullify unstable

perturbations in the combustor (Bennewitz and Frederick, 2013; Zhao et al., 2018;

Thannickal et al., 2021). However, proper sensing of the disturbance and compact fast-

response actuators need to be developed to realize active control solutions to operate in

the harsh environments of an LPRE. Therefore, active control techniques have not been

deployed in full-scale LPREs.

Ideally, LPRE combustors should be designed for stability along with performance.

However, at present, this design methodology is not feasible. Since the methods

used to impede high-frequency thermoacoustic instabilities are evolved by trial

and error approaches, a comprehensive understanding of the physics behind

initiating and sustaining these instabilities is lacking. Hence, there is an impetus

for understanding thermoacoustic instabilities through experiments, high-fidelity

32



simulations and theoretical approaches.

1.6 RECENT ADVANCES

In this century, the phenomenon of thermoacoustic instability is being analyzed

adopting a variety of novel methods inspired from dynamical systems theory (Sujith

and Unni, 2020b; Juniper and Sujith, 2018) and complex systems theory (Sujith and

Pawar, 2021). These approaches have been successful in explaining the temporal

evolution of combustion dynamics, coupling behavior between acoustics and heat

release rate, and elucidating the mechanisms which generate and sustain thermoacoustic

instabilities. Moreover, an array of early warning measures to forewarn the occurrence

of thermoacoustic instability have been unearthed (Pavithran et al., 2021). However,

the bulk of the recent research efforts applying these methods have been focused on

understanding thermoacoustic instabilities in gas turbine engines. Here, we briefly

describe the advances made using each of these methods.

1.6.1 Dynamical systems approach

Any system whose behavior changes with time is called a dynamical system (Strogatz,

2018). In an experimental setting, one does not have access to all the state variables

which enables us to understand the temporal behavior of the system. The tools from

dynamical systems theory allows one to characterize the long-term temporal behavior

of a dynamical system even with the limited variables acquirable from experiments.

Further, this approach have helped us make great strides towards understanding the

nonlinear characteristics of thermoacoustic instability (Sujith and Pawar, 2021).

Dynamical states

In solid propellant rocket motors, Culick and co-workers used nonlinear acoustics

to theoretically explain the saturation of amplitude leading to limit cycle oscillations

(Culick, 1994; Jahnke and Culick, 1994; Burnley and Culick, 2000). Later, in gas
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turbine combustors, limit cycle oscillations were shown to arise from the nonlinearities

in the flame dynamics (Peracchio and Proscia, 1999; Lieuwen, 2002).

Applying numerical continuation methods, Jahnke and Culick (1994) showed that

a thermoacoustic system can undergo pitchfork and torus bifurcations to exhibit

quasiperiodic oscillations from limit cycle oscillations characterized by the presence

of more than one incommensurate frequency. Chaotic oscillations were discovered first

in models for premixed combustor (Sterling, 1993) and experiments on a laboratory

gas turbine type combustor (Fichera et al., 2001). Recently, chaotic oscillations have

been reported in the solid propellant rocket motors (Guan et al., 2018) and model rocket

combustors (Aoki et al., 2020).

Using bifurcation studies, different routes to chaos in a laminar thermoacoustic system

were established (Kabiraj et al., 2012; Guan et al., 2020). The presence of a variety of

dynamical states such as intermittency, frequency-locked, chaos, and quasiperiodicity

were reported. Each dynamical state was characterized using phase space trajectories,

recurrence plots, and return maps. The flame dynamics were remarkably different for

each of these dynamical states. Understanding the difference in the flame dynamics

for each state is crucial since each state would impose different thermal loading on the

combustor.

In a turbulent combustor, Nair et al. (2013) proved that the aperiodic oscillations

during stable operation of the combustor was chaotic. However, during thermoacoustic

instability, this chaotic behavior was lost, paving way to ordered periodic oscillations.

Nair et al. (2014) showed the presence of intermittency in between combustion

noise (i.e., the stable state) and thermoacoustic instability. This intermittent

state is characterized by bursts of high amplitude periodic oscillations interspersed

between epochs of low amplitude aperiodic oscillations in an apparently random

manner. Subsequent studies have confirmed the presence of intermittency prior to

thermoacoustic instability (Gotoda et al., 2014; Kheirkhah et al., 2017; Ebi et al.,

2018). It was revealed that the state of combustion noise is actually not stochastic
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but deterministic (Tony et al., 2015). The flame dynamics during intermittency was

found to be drastically different to that observed during stable state and thermoacoustic

instability (Unni and Sujith, 2017; George et al., 2018).

Performing multifractal analysis, Nair et al. (2014) showed that the acoustic pressure

signal observed during combustion noise is multifractal, wherein the magnified views

of the signal encompass the features of the entire signal. They attributed the existence

of multiple time scales in the system to this multifractal nature. However, during the

onset of thermoacoustic instability, this multifractal nature in the combustion dynamics

is lost. Exploiting this disappearance, several precursors to thermoacoustic instability

were devised.

Synchronization

Several studies have focused on the coupled interaction between the acoustic pressure

and heat release rate fields during stable and unstable operations (Rogers and Marble,

1956; Zukoski, 1985; Poinsot et al., 1987). However, only recently, Pawar et al.

(2017) investigated this coupled behavior during the transition from stable state

to thermoacoustic instability using techniques from synchronization theory. They

observed desynchronized chaos during stable state. However, during thermoacoustic

instability, they observed synchronized periodicity. In the intermediate state of

intermittency, they observed synchronization during epochs of periodic oscillations

punctuated by desynchronization during epochs of aperiodic oscillations, resulting

in intermittent phase synchronization. Furthermore, they distinguished two different

(strong and weak) synchronization behaviors during thermoacoustic instability. The

weaker state is referred to as phase synchronization where the phases of acoustic

pressure and heat release rate oscillations are synchronized. For a different operating

condition also corresponding to thermoacoustic instability, they reported a stronger

form of synchronization known as generalized synchronization where both the phase

and the amplitude of acoustic pressure and heat release rate oscillations are also
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synchronized.

Mondal et al. (2017b) investigated the spatiotemporal synchronization behavior

between the local heat release rate and the global acoustic field in the same turbulent

combustor. During intermittency, they discovered the coexistence of patches of

synchronized periodic oscillations and desynchronized aperiodic oscillations coexisting

in the reaction zone. Since these patterns of spatial synchrony and spatial desynchrony

interchange as the flow convects downstream, they called the synchronization state

a breathing chimera-like state. Chiocchini et al. (2018) built an interdependence

index based on synchronization to forewarn an impending thermoacoustic instability.

Borrowing concepts from synchronization theory, there have been several studies which

used open-loop forcing to suppress the amplitude of thermoacoustic oscillations (Guan

et al., 2019a; Mondal et al., 2017a; Roy et al., 2020; Sahay et al., 2021).

Evidently, most of these works barring a few, have been performed for understanding

the dynamical behavior in Rijke tubes, laminar burners, and gas turbine-inspired

turbulent combustors. In this thesis, we advocate adopting this approach to study the

dynamical behavior in rocket combustors.

1.6.2 Complex systems approach

The dynamics of many natural and man-made systems are composed of a large number

of interacting units. The interactions between these units (or subsystems) leads to the

emergence of an aggregate nonlinear system behavior. This ‘whole’ system behavior

cannot be understood by the reductionist approach of ‘sum of its parts’. Besides, the

system can self-organize under different stimuli as a result of this complex nonlinear

behavior. Such systems which encapsulate all such traits can be regarded as a complex

system (Bar-Yam et al., 1998).

An LPRE combustor can be considered as one such complex system whose behavior

is determined by a variety of intricate interactions between the spatially spread flame,

turbulent flow, and acoustic subsystems. Moreover, these interactions are spread out
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over a wide range of spatial and temporal scales determined by the combustion, flow,

and thrust chamber geometry (acoustics).

Complex networks

The framework of complex networks is one of the favored approaches to study the

dynamics of complex systems (Barabási et al., 2016; Newman, 2018). Deriving its

roots from graph theory, sociology and statistical physics, complex networks exploded

into a popular science in the beginning of this century. Since its inception, complex

networks has been widely used in a variety of sciences including reactive flows (Sujith

and Unni, 2020a; Shima et al., 2021). Complex networks affords the unique prospect

of being constructed in any user-defined manner to study a specific aspect of the system

dynamics. Complex networks can be built solely from the temporal or spatiotemporal

data acquired from experiments (Zou et al., 2018; Iacobello et al., 2020).

Using visibility algorithm, Murugesan and Sujith (2015) constructed complex networks

corresponding to the time series of local pressure maxima in a turbulent combustor.

They identified that the resulting network during the state of combustion noise exhibited

a scale-free topology. During the transition to thermoacoustic instability, this scale-free

nature is lost, leading up to a regular network. In the same combustor, Tandon and Sujith

(2021) studied the emergence of order during thermoacoustic instability from disorder

during combustion noise in the same combustor using cycle networks. Constructing

recurrence networks, Godavarthi et al. (2017) studied the topology of the phase space of

the pressure fluctuations during the transition from combustion noise to thermoacoustic

instability. Using cycle networks, Okuno et al. (2015) showed the existence of pseudo-

periodicity and high-dimensionality in the dynamics during thermoacoustic instability.

Unni et al. (2018) studied the flow dynamics for the stable, intermittent and unstable

regimes of a turbulent combustor by analyzing the topology of a time-averaged

spatial network derived from the velocity field. They discerned that the spatial

regions exhibiting extreme values of network centrality measures are the ‘critical
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regions’ in the flow-field where control actions need to be targeted. Krishnan et al.

(2019b) investigated the spatiotemporal dynamics of acoustic power sources for the

different operational regimes of the same combustor by constructing time-varying

spatial networks. They suggested that small fragments of acoustic power sources which

exist during combustion noise nucleate, coalesce, and grow to form large clusters during

thermoacoustic instability. Later, they suppressed thermoacoustic instability by targeted

secondary air-jets on the ’hub’ regions highlighted by the network measures (Krishnan

et al., 2019a). They also quantified the vorticity interactions using spatial weighted

turbulent networks constructed from Biot-Savart law (Krishnan et al., 2021).

Marrying synchronization and vorticity networks, Hashimoto et al. (2019) studied

the spatiotemporal dynamics during thermoacoustic instability in the large eddy

simulations of a O2/H2 rocket combustor featuring a single coaxial injector element.

Recently, using thermoacoustic power networks, Shima et al. (2021) elucidated

the formation mechanism of high-frequency thermoacoustic oscillations in the same

combustor. Using symbolic transfer entropy, they identified causality relationships

between acoustic pressure and heat release rate fluctuations during the transition to

thermoacoustic instability. Aoki et al. (2020) characterized the intermittent behavior

in the experimental single-element O2/H2 combustor using a combination of ordinal

partition transition networks and symbolic dynamics.

1.6.3 Machine learning

Over the last few years, rapid advances made in machine learning algorithms

have pervaded all fields of science and engineering (Bishop, 2006; Brunton et al.,

2020). Specific applications to LPREs include combustion instability analysis

(Waxenegger-Wilfing et al., 2021b), health monitoring (Schwabacher, 2005), and

control (Dresia et al., 2021; Waxenegger-Wilfing et al., 2021a). Novel machine learning

algorithms mated with other recently developed methods have been realized to precurse

thermoacoustic instability (Kobayashi et al., 2019; Gangopadhyay et al., 2020; Ruiz
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et al., 2021; Cellier et al., 2021; Sengupta et al., 2021; Bury et al., 2021; Dhadphale

et al., 2021). In the future, machine learning methods are likely to play a major role in

the modeling of LPRE development, and in LPRE control and monitoring applications.

1.7 INTERIM SUMMARY AND MOTIVATION

The presence of complex nonlinear interactions between the acoustic and the reactive

flow subsystems in the LPREs leads to thermoacoustic instability. Conventionally, the

stability of the combustion chambers in LPREs has been either classified as stable

or unstable. However, in practice, there exist intermediate states. The dynamical

behavior during these intermediate states is significantly different from the stable state

and thermoacoustic instability. Hence, it is vital to understand the combustion dynamics

during the entire transition from stable state to full-blown thermoacoustic instability via

intermediate states.

Furthermore, contemporary LPREs are developed based on computational fluid

dynamics (CFD) simulations and phenomenological models before subjecting to

subscale tests, cold flow tests, and hot flow tests. Due to the exorbitant costs and

lengthy development timelines involved, it is critical that the simulations and models

capture all the required physical aspects of the system. A failure to do so would lead

to a mismatch between simulation data and real data. Such a failure might potentially

delay the development of rocket engines for their respective applications. Given this

scenario, parallel research efforts to match the amplitude levels seen in experiments

with those obtained in the models are being undertaken (Sardeshmukh et al., 2015).

The current state of the art of such high fidelity simulations has not progressed to fill

the gap between experiments and numerical results. In many simulations, it is very

difficult to obtain a good match in the amplitudes and the frequencies. Even if this is

achieved, the resultant waveforms of the pressure oscillations are dissimilar and do not

capture important features such as wave steepening (Saenger and Hudson, 1960). The

failure to capture these behaviors can lead to significant departures in determining the
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combustion stability of LPREs. Therefore, future modeling efforts must go beyond the

quantitative comparisons of pressure and heat release rate amplitudes and frequencies,

and try to capture other intricate features such as steepened pressure and heat release

rate waveforms, multi-scale nature of the time series, etc.

Tools from the nonlinear theory have made substantial progress in characterizing

the dynamics in laboratory-scale burners to gas turbine combustors (Juniper and

Sujith, 2018). Despite this progress, there is a dearth of similar studies focused on

rocket engines apart from a handful of studies. Given the critical consequences of

nonlinearities in LPREs, we need to apply tools from dynamical systems theory and

complex systems theory to characterize combustion dynamics in LPREs. Suitable

measures developed following such an approach can be used to augment existing

tools to tightly validate high-fidelity simulations aimed at developing stable LPREs.

This approach would help us understand and characterize several nonlinear behaviors

exhibited by LPREs, which are otherwise not feasible from the viewpoint of linear

theory. Further, the characterization of the signal features following dynamical systems

and complex systems theory provide an alternative method to accurately quantify the

stability margin of LPREs based on both simulations and experiments.

Moreover, much of the literature on the stability of LPREs is focused only on the state

of thermoacoustic instability. We intend to study not only thermoacoustic instability but

the transition to thermoacoustic instability from the stable state as well. Furthermore,

the self-excited nature of the combustor used in this study preserves the natural coupling

mechanisms between the subsystems, providing us an edge over other studies pertaining

to the forced response of external transverse acoustic oscillations. Sufficient knowledge

about the coupled interaction between the spatiotemporal acoustic pressure and the

heat release rate oscillations along with the flame dynamics subject to a transverse

acoustic field would vastly improve the accuracy of modeling efforts and accelerate the

development of stable LPREs. Furthermore, a comparative study of the flame dynamics

near the wall and the center of the combustor would illuminate the non-local nature of
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the coupling in the combustor.

1.8 OBJECTIVES

The primary aim of the thesis is to establish the frameworks of dynamical systems

theory and complex systems theory to study the temporal and spatiotemporal dynamics

in rocket combustors. In this thesis, we investigate the dynamics during the transition

to self-excited transverse thermoacoustic instability in a model multi-element rocket

combustor operating at elevated pressure conditions. The specific objectives are:

(a) Identify and characterize the dynamical states that occur during the transition to
thermoacoustic instability.

(b) Characterize the slow-fast timescales present in the wave steepened acoustic
pressure oscillations during thermoacoustic instability and provide methods to
distinguish such signals from other time series signals.

(c) Using tools from synchronization theory, characterize the temporal and
spatiotemporal coupled interaction between the acoustic pressure and
methylidyne (CH*) chemiluminescence intensity oscillations (representative of
heat release rate) during the transition from stable state to thermoacoustic
instability via intermittency.

(d) Compare the local CH* intensity oscillations near the end wall and the center
regions of the combustor during the transition to thermoacoustic instability.

(e) Estimate the contribution of each transverse acoustic modes to the spatial
distribution of acoustic power during thermoacoustic instability at different
transverse locations in the combustor.

(f) Quantify the extent of coherence in the CH* intensity oscillations for each
dynamical state at different transverse locations of the combustor using the
approach of weighted correlation networks.

1.9 OVERVIEW AND SCOPE OF THE THESIS

We study the transition to thermoacoustic instability in a multi-element subscale

combustor of a rocket engine based on the oxidizer-rich staged combustion cycle.

This oxidizer-rich staged combustion cycle pioneered by the erstwhile Soviet Union

(Katorgin et al., 1995) is sought actively along with other staged combustion cycles

by different countries due to its performance advantage (i.e., higher specific impulse)
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(Bedard et al., 2021; Suresh, 2021). The experimental datasets were made available

by Prof. William Anderson at Purdue University. This experimental dataset has been

extensively analyzed at Purdue (Orth et al., 2018; Gejji et al., 2019, 2020) and Air Force

Research Laboratory, USA (Harvazinski et al., 2019). In Chapter 2, we describe the

experimental setup of the rocket combustor and the measurement techniques utilized.

This combustor exhibits self-excited high-frequency transverse instabilities. In

Chapter 3, we characterize the various dynamical states during the transition to

thermoacoustic instability using tools from dynamical systems theory along with the

traditional tools. Then, in Chapter 4, we show the presence of slow and fast timescales

in the wave steepened limit cycle oscillations during thermoacoustic instability and

characterize the corresponding dynamics using recurrence networks.

Inspired by the progress in elucidating the different synchronization states of

thermoacoustic instability in gas turbine type combustors, we differentiate the coupling

between the acoustic pressure and heat release rate oscillations at the wall and the center

of the combustor in the rocket engines in Chapter 5. We also devise a methodology to

quantify the contribution of each acoustic mode towards the spatiotemporal acoustic

power sources and sinks during thermoacoustic instability. In Chapter 6, we construct

complex networks to study the coherent and incoherent spatiotemporal heat release

rate oscillations during the transition to thermoacoustic instability. We highlight the

differences in the flame dynamics at the wall and the center regions of the combustor for

each dynamical state. Throughout the thesis, we utilize the frameworks of dynamical

systems theory and complex systems theory for our temporal and spatiotemporal

analyses. Such an approach has been largely unexplored in the case of rocket engines.

Finally, we summarize our conclusions, describe the direct implications of our findings,

and suggest future directions in Chapter 7.
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CHAPTER 2

Experimental setup and measurement techniques

All the experiments are performed in a multi-element self-excited subscale rocket

combustor based on an oxidizer-rich staged combustion cycle. This combustor is

an evolution of combustors designed over the last decade to excite transverse mode

thermoacoustic instabilities at Maurice J. Zucrow Laboratories, Purdue University.

The experimental rig was designed, built and tested under the guidance of Prof.

William Anderson (Orth et al., 2018). We obtained the datasets corresponding to

the pressure measurements acquired at various locations in the combustor and the

methylidyne (CH*) chemiluminescence measurements acquired from the optically

accessible windows of this combustor for our analysis.

2.1 EXPERIMENTAL SETUP

Known as the transverse instability combustor (TIC), the experimental rig consists of

an oxidizer-rich preburner and a rectangular combustion chamber intended to produce

self-excited transverse thermoacoustic instabilities (see Fig. 2.1). Since the main focus

was to study transverse instabilities, the combustor consists of a long converging section

intended to damp out the longitudinal modes.

The preburner is used to raise the temperature of gaseous oxygen. The preburner uses

gaseous oxygen as oxidizer and hydrogen as fuel. The preburner feeds oxygen with

4%-5% mass fraction of water vapor to the combustor at a mean chamber pressure

of 6.55 MPa, and mean temperature of 635 K. The combustor houses a linear array

of nine oxidizer centered gas-gas shear coaxial injectors located at the entry to the

combustion chamber. The injectors are designed based on the heritage Soviet designs

used in oxidizer rich staged LPREs such as RD-170/180. A similar injector design is

being tested for the semi-cryogenic engine under development in India (Rohit et al.,

2013).



An oxidizer manifold feeds the hot oxidizer (oxygen with 4% - 5% mass fraction of

water vapor) uniformly to each of the coaxial injectors. The fuel, methane at 297 K, is

injected through each of the shear coaxial injectors downstream of the oxidizer posts

through a manifold with a choked inlet. In turn, nine non-premixed turbulent jet flames

are established in the combustor. The propellant flow rates were chosen to maintain

an equivalence ratio of approximately 1.24, which is typical for oxidizer-rich staged

combustion cycle rocket engines. A mean Mach number of 0.265 is established in the

oxidizer posts at nominal operating conditions. A mean pressure level of ∼1.14 MPa is

maintained over the course of a test.

The combustor walls are coated with a protective layer of thermal barrier coating to

minimize the wall heat loss during the test interval. The cumulative mass flow rate of

oxidizer is 0.71 kg/s, while the mass flow rate of methane is maintained at 0.22 kg/s.

Propellant flows are metered using critical flow venturi nozzles placed upstream of the

choked inlets to the propellant manifolds (American Society of Mechanical Engineers,

2016; International Standards Organization, 2005). Uncertainty of mass flow rates, and

subsequently operating conditions, were evaluated using the Kline-McClintock method

of uncertainty propagation (Kline and McClintock, 1953) and following the procedure

presented by Walters et al. (Walters et al., 2020). The typical uncertainty in mass flow

rate of propellants was ≤1% with a 95% confidence interval.

A summary of operating conditions are provided in Table. 2.1.

Table 2.1: Summary of operating conditions

ṁOx ṁfuel ϕ Pc TOx Tfuel f1T
[kg/s] [kg/s] [-] [MPa] [K] [K] [kHz]
0.71 0.22 1.24 1.14 620 297 2.65

Geometry

The geometry and operating conditions are devised such that only transverse modes (1T

mode frequency at 2650 Hz) are excited in the combustor. The combustion chamber is

240 mm wide and 30.5 mm deep. The 200 mm long combustion chamber is split into a
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(a)

 CH* - chemiluminescence: Center window &  end wall window 

(b)

(d)(c)

Fig. 2.1: (a) Schematic of the multi-element rocket engine combustor. The
high-frequency pressure transducer and photomultiplier tube measurement
locations are labeled as PT and PMT, respectively. (b) Image of the combustor
during a hot-fire test. (c) Pressure time trace with time stamps of the various
test stages. (d) Representative CH*-chemiluminescence images as observed
from the optically accessible windows located near the center and the end wall
of the combustor are shown.

118.5 mm straight section and 81.5 mm converging section. The combustion chamber

is terminated with a converging section designed to preempt longitudinal modes and

ensure acoustic decoupling from the downstream locations. The length of the chamber

is designed for a fundamental longitudinal (1L) mode of 3475 Hz. This choice of length

ensures that the harmonics of the transverse modes do not coincide with the 1L mode

or its harmonics. A nozzle at the end of the converging section provides a choked

boundary condition at the exit of the combustor.

All the injectors are uniformly spaced out by an injector centerline-centerline distance

of 25.7 mm. The exit diameter of the injector element is 15.7 mm. The geometry of the
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oxidizer manifold is tuned to minimize dynamic pressure losses and provide uniform

flow to each of the injection elements downstream of it. A choke plate located upstream

of each injector helped to decouple any feed system dynamics from the experiment and

vice versa.

2.2 MEASUREMENT TECHNIQUES

Two spatial regions of interest are analyzed separately through tests - A and B

performed under the same set of operating conditions. For test A, the optically

accessible region is located towards the right end of the combustor, while for test B,

this region is located near the center. Thus, we observe two jet flames for test A and

three jet flames for test B (see Fig. 2.1d).

2.2.1 Pressure measurement

The acoustic pressure oscillations are acquired at the right-side end wall (PT-01) and

the center of the combustor (PT-02) using piezoresistive Kulite WCT-312M sensors,

at a rate of 250 kHz. The pressure sensors are installed in a recessed Helmholtz

cavity to provide thermal isolation from the hot combustion exhaust. The resonance

frequency (22.4 kHz) of the cavity is designed to be higher than any frequencies of

interest in the experiment (∼22 kHz) (Fugger et al., 2017). This installation enables

accurate measurement of dynamic pressure fluctuations in the chamber while reducing

thermal load on the sensor element. The location of the pressure transducers used for

the analysis are labeled in Fig. 2.1a.

2.2.2 Chemiluminescence measurement

Based on simulations and experiments performed for similar pressures and operating

conditions, Bedard et al. (Bedard et al., 2020) and Sardeshmukh et al. (Sardeshmukh

et al., 2017) compared heat release rate to chemiluminescence from CH*, OH* and

CO2* radicals in the flame. They concluded that the CH* chemiluminescence provided

a better qualitative representation of the heat release rate dynamics even though a phase
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difference was reported between the experimentally obtained CH* emissions and the

heat release obtained from the computations.

A Hamamatsu photomultiplier tube module (H11903-210) attached to a fiber optic

probe gathered line of sight light emissions from a volume in the optically

accessible window (PMT-01 and PMT-02) accessible in the combustor. The light

emissions are filtered using an optical filter (Semrock FF01-427/10) to obtain CH*

chemiluminescence signals at the same rate of 250 kHz synchronous with the acoustic

pressure measurements (Bedard, 2017).

Line-of-sight integrated high speed CH* chemiluminescence images are simultaneously

recorded at a rate of 100 kHz through the optically accessible windows in the

combustion chamber. An optical filter (Semrock 434/14 Brightline Bandpass) of 14

nm bandwidth centered at 434 nm isolated the CH* emissions from the background

luminosity. The emissions are collected through a 200 mm focal length, f /4.0 objective

(Nikon AF Micro NIKKOR) and then amplified by a Lambert HiCATT 25 intensifier

with 1:1 relay lens, and recorded with a Phantom v2512 high speed CMOS camera with

a spatial resolution of 0.214 mm/pixel. The intensifier gain was set at 750 V with an

exposure of 1 µs. The same camera and intensifier settings were used for both the tests.

The CH* chemiluminescence measurements from the high speed imaging are

representative of the local heat release rate dynamics. However, the photomultiplier

measurement is representative of the cumulative heat release rate measurement since

the obtained emissions emanates from a probe volume rather than just a point. The

probe volume covered by the photomultiplier is shaded in orange in Fig. 2.1a. Further

details of the operating conditions, hardware, design, measurement, and data acquisition

techniques can be found in studies performed at Purdue University (Orth et al., 2018;

Harvazinski et al., 2019).
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2.3 TEST RUN

Ignition of preburner and main combustion chamber is achieved using hydrogen-oxygen

torch igniters. A representative time series of acoustic pressure oscillations obtained

from the pressure transducer located at the right side wall of the combustor is shown

in Fig. 2.1c. The time interval in region I corresponds to starting of the preburner and

the ignition of the main chamber. The first jump in the pressure signal close to 1 s

corresponds to the start of the preburner and the second jump around 2.5 s corresponds

to the ignition of the main chamber. Region III pertains to the shutdown of the engine.

The acoustic pressure oscillations in region II are of prime interest in this study, as

this interval of the signal represents the actual dynamical transitions from stable state

to thermoacoustic instability in the rocket combustor. Therefore, a test run comprising

approximately 1 s of steady inflow provides sufficient time to acquire data exhibiting

transition to thermoacoustic instability at the frequencies of interest with negligible

effects of heat loss (Orth et al., 2018).
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CHAPTER 3

Dynamical characterization of acoustic pressure oscillations

during the transition to thermoacoustic instability

Combustion at elevated pressures and temperatures typical in rocket combustors is a

highly nonlinear and dynamic process. As described in Sec. 1.4.1, the nonlinearities

may emerge either from the flame, flow (turbulence and gas dynamic), the acoustics, and

their interactions. As a result, rocket combustors exhibit a variety of dynamic behaviors

attributed to nonlinear effects such as limit cycle oscillations, triggering, shifts in mean

pressure levels, and shock waves. Adopting the framework of dynamical systems and

complex systems theory, recent studies in gas turbine literature have shown immense

progress towards understanding several dynamical states of combustor operation such

as chaos, period-n limit cycle, and quasiperiodicity (Kabiraj et al., 2012; Juniper and

Sujith, 2018). Several measures such as Hurst exponent and recurrence quantification

measures have been deployed to detect the proximity to the onset of thermoacoustic

instability (Sujith and Pawar, 2021). In light of these advancements, it is enticing to

apply this framework to understand the combustion dynamics in rocket combustors.

In this chapter, we apply various tools from nonlinear time series analysis to detect

the different dynamical states and also characterize the dynamical transitions observed

in acoustic pressure oscillations of the combustor. First, we briefly discuss the various

tools used in our analysis. Next, we perform time series analysis of pressure oscillations

for the different dynamical states. Then, we perform recurrence quantification analysis

and multifractal analysis. Finally, we describe several measures that can be used to

detect the dynamical transitions across different dynamical states in the combustor.

This chapter is published in Kasthuri, P., I. Pavithran, S. A. Pawar, R. I. Sujith, R. Gejji, and W.
E. Anderson (2019). Dynamical systems approach to study thermoacoustic transitions in a liquid rocket
combustor. Chaos, 29(10), 103115.



3.1 NONLINEAR TIME SERIES ANALYSIS

In order to study the dynamics inside combustion chambers of rocket engines, we need

access to a wide variety of system variables. However, it is difficult to obtain data of

all the independent variables that govern the dynamics of a rocket combustor. Usually

only a handful of system variables (in the limiting case, at least one) are available to

be acquired by an experimentalist. From such a limited dataset, applying techniques

based on nonlinear time series analysis allows us to study the nontrivial underlying

mechanisms (Ambika and Harikrishnan, 2020). Next, we will briefly describe the

methodology used to perform the nonlinear time series analysis.

3.1.1 Takens’ delay embedding

The dynamics of a rocket combustor in the higher dimensional phase space can be

reconstructed from a state variable (for example, acoustic pressure: p′) by Takens’

delay embedding theorem (Takens, 1981). Such a reconstruction involves converting

the univariate time series data into a set of delayed vectors from the appropriate

choices of time delay (τopt) and embedding dimension (d). We construct the vectors

x′(t) = [(p′(t), p′(t + τopt), p
′(t + 2τopt), . . . , p

′(t + (d − 1)τopt))] from the measured

pressure signal, p′(t). Here, t is varied from 1 to n − (d − 1)τopt, where n is the

total number of data points in the signal. Each delay vector corresponds to a state

point in the phase space and the combination of all these vectors constitute a phase

space trajectory. To perform an appropriate phase space reconstruction for a particular

state of the system, we need to obtain the optimum time delay (τopt) and the minimum

embedding dimension (d) for the given signal. Here, τopt can be estimated using average

mutual information (Fraser and Swinney, 1986) or autocorrelation function (Nayfeh and

Balachandran, 2008). The minimum embedding dimension (d) can be obtained using

false nearest neighbor method (Nayfeh and Balachandran, 2008) or alternately Cao’s

method (Cao, 1997) which we use in this study.
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3.1.2 Recurrence analysis

Recurrence of state points in the phase space is a fundamental property of bounded

dynamical systems. Recurrence plots are used to visually identify the time instants at

which the phase-space trajectory of the system re-visits roughly the same area in the

phase space (Eckmann et al., 1995). The patterns present in a recurrence plot allow us

to characterize the features of the signal embedded in the d-dimensional phase space.

The construction of the recurrence plot requires a prior knowledge of the optimum time

delay (τopt) and minimum embedding dimension (d). The recurrence plot of any time

series is constructed by computing the pairwise distances between the state points of

the reconstructed phase space. For a time series of n time instants, we can obtain the

phase space trajectory x⃗′(t) made of n − (d − 1)τopt time instants. Then, the pairwise

distances between all state points in the phase space can be accommodated in a distance

matrix (PDij), as formulated below,

PDij =
∥∥∥x⃗′i − x⃗′j

∥∥∥ i, j = 1, 2, . . . , n− (d− 1)τopt. (3.1)

Here,
∥∥∥x⃗′i − x⃗′j

∥∥∥ is the Euclidean distance between the two state points, i and j, on the

phase space trajectory. Then, PDij is binarized by applying a suitable threshold (ϵr) to

obtain the recurrence matrix (Rij).

Rij = Θ(ϵr − PDij), (3.2)

where Θ is the Heaviside step function and ϵr is the threshold defining the neighborhood

around the state point. The threshold (ϵr) can be fixed as a certain fraction of the size

of the phase space attractor. Whenever a state point in the phase space recurs in the

predefined threshold, it is marked as a black point. Non-recurring points are marked as

white points in the recurrence plot. Rij is one for a black point and zero for a white

point. Thus, a recurrence plot is a two-dimensional arrangement of black and white

51



points that exhibits different patterns characterizing different dynamics of the signal.

Several statistical measures can be derived from the organization of such black and

white points in the recurrence plots. Such an analysis is known as the recurrence

quantification analysis of a measured signal. One of the prime advantages of this

analysis is that it can be applied to short and even nonstationary data, making it apt

for data analysis from rocket combustors. Measures such as determinism, recurrence

rate, trapping time, entropy, laminarity, and average diagonal length can be used to

study the recurrence behaviour of the phase space trajectory (Marwan, 2003; Webber Jr

and Marwan, 2015). These measures could further be used to distinguish between

the various dynamical states exhibited by the system. Here, we discuss the usage

of determinism (DET ), recurrence rate (RR), and the ratio between these quantities

(RATIO) in the analysis of acoustic pressure data obtained experimentally from the

model rocket combustor.

Recurrence rate measures the density of black points in a recurrence plot and can be

obtained as:

RR =
1

N2

N∑
i,j=1

Rij (3.3)

where N = n − (d − 1)τopt is the number of state vectors in the reconstructed phase

space.

Determinism measures the percentage of black points in a recurrence matrix which form

diagonal lines of minimum length lmin.

DET =

∑N
l=lmin

lP (l)∑N
l=1 lP (l)

(3.4)

where, P (l) is the probability distribution of diagonal lines having length l and lmin =

2.

The ratio of determinism and recurrence rate (RATIO = DET/RR) has been

introduced by Webber Jr and Zbilut (1995) to discover transitions in physiological

systems.
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3.1.3 Multifractal analysis

Classical Euclidean geometry deals with smooth objects which have an integer

dimension. However, many things in nature contain wrinkles when observed at different

levels of magnification. Such objects or signals are classified as fractals and they

exhibit self-similar features at various observational scales (Feder, 2013). Measures

such as length, area, and volume for such objects are dependent on the scale at which

the measurements are performed. The logarithmic plot of the measure of the object

versus the scale at which the object is measured would give a straight line with an

inverse power law (Feder, 2013). The absolute value of the slope of this line is known

as fractal dimension (D). Fractal dimension can then be used to describe a fractal time

series which exhibits self-similarity at various timescales (Mandelbrot, 1967). For a

fractal time series signal, the Hurst exponent (H) quantifies the amount of correlation

in the signal and is related to the fractal dimension of the time series as D = 2 − H

(Mandelbrot, 1983). If p(t) is a fractal time signal, then p(ct) = p(t)/cH is another

fractal signal preserving the same statistics (Nair and Sujith, 2014).

Certain complex signals cannot be described using a single fractal dimension. These

signals can be described with a range of fractal dimensions and such signals are

classified as multifractals. In this thesis, we use multifractal detrended fluctuation

analysis (MFDFA) (Kantelhardt et al., 2002) to study the multifractal characteristics

of the time series of acoustic pressure oscillations. To estimate the Hurst exponent, the

time series [p(t)] is mean [⟨p(t)⟩] adjusted to get a cumulative deviate series yi as:

yi =
i∑

t=1

(p(t)− ⟨p(t)⟩) i = 1, 2, . . . , n (3.5)

⟨p(t)⟩ =
∑n

t=1 p(t)

n
. (3.6)

The deviate series is then separated into an integer number nw non-overlapping

segments of equal span w. To look for trends in the segments, a local polynomial

53



fit (yi) is made to the deviate series yi and the fluctuations about the trend are obtained

by subtracting the polynomial fit from the deviate series. Next, a quantity known as

structure function (F q
w) of order q and spanw, can then be obtained from the fluctuations

for q ̸= 0 as:

F q
w =

 1

nw

nw∑
i=1

√√√√ 1

w

w∑
t=1

(yi(t)− yi)
2

q1/q

. (3.7)

For q = 0, F q
w diverges. Therefore, a logarithmic averaging is performed to obtain the

value of F q
w as q ⇒ 0 (see Appendix. C). Finally, we obtain for q =0, we obtain

F q
w = exp

[
1

2nw

nw∑
i=1

log

(
1

w

w∑
t=1

(yi(t)− yi)
2

)]
. (3.8)

The generalized Hurst exponents [H(q)] is then obtained from the slope (Ihlen, 2012)

of the linear regime in a log-log plot of F q
w, for a range of span sizes, w. We obtain

this linear regime for 2 to 10 cycles of the acoustic oscillations corresponding to the

frequency of 2650 Hz during thermoacoustic instability, as described in Appendix. A.

Thenceforth, the generalized Hurst exponents can be represented as a spectrum of

singularities, f(α), via a Legendre transform (Zia et al., 2009).

τq = qHq − 1 (3.9)

α =
∂τq
∂q

(3.10)

f(α) = qα− τq. (3.11)

This spectrum, represented in the form of a plot of f(α) against α, is known as the

multifractal spectrum. The multifractal spectrum provides information on the fractal

characteristics of the data. Further details regarding MFDFA can be found in the work

of Kantelhardt et al. (2002) and Ihlen (2012).
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In literature, the generalized Hurst exponent H(q) for q = 2 is popularly known as the

Hurst exponent (H). For q = 2, H becomes the scaling of the root mean square of the

standard deviation of the fluctuations with the window size. Since its introduction, H

has been used for various applications (Grech and Mazur, 2013; Suyal et al., 2009).

In thermoacoustics, Nair and Sujith (2014) have used H to capture the transition

from stable state to thermoacoustic instability via intermittency in a laboratory-scale

turbulent combustor. Also, Unni and Sujith (2016) have used H as a precursor to detect

blowout in a turbulent combustor.

3.2 CLASSIFICATION OF DYNAMICAL STATES

In this section, we characterize the temporal behavior of acoustic pressure oscillations

observed during the onset of thermoacoustic instability in the rocket combustor.

Towards this purpose, we examine the time series of the chamber acoustic pressure

oscillations, as shown in Fig. 3.1, acquired for the same operating conditions (working

fluids, flow rates, upstream pressures, and temperatures) and the injector configurations.

However, we notice that although the operating conditions are the same during

experiments, the dynamics arising out of the combustor is different during each trial.

The data-sets chosen for the analysis along with the dynamical transitions observed are

summarized in Table. 3.1. Throughout the rest of this thesis, overline and prime are

used to denote mean and fluctuations of the concerned quantity, respectively.

For Test - A (Fig. 3.1a), we observe that the time series is entirely composed of stable

state, exhibiting low amplitude aperiodic oscillations. For Test - B (Fig. 3.1b), we

observe small epochs of marginally large amplitude periodic oscillations interspersed

within the aperiodic oscillations of the signal. We refer to this dynamical state as

intermittency. In general, intermittency refers to a dynamical state composed of high

amplitude bursts of periodic oscillations amidst epochs of low amplitude aperiodic

oscillations in an apparently random manner (Nair et al., 2014). Next, we obtain a

transition from stable state to thermoacoustic instability via intermittency for Test - C

55



Fig. 3.1: Time series of acoustic pressure fluctuations acquired at the right side wall
of the combustion chamber in the interval of interest marked II in Fig. 1c for
tests: (a) Test - A (stable state), (b) Test - B (intermittency), (c) Test - C (stable
state - intermittency - thermoacoustic instability), (d) Test - D (intermittency
- thermoacoustic instability), and (e) Test - E (intermittency - thermoacoustic
instability). The representative portions of the various dynamical states are
zoomed and shown in the insets: (i) stable state, (ii) intermittency, and (iii)
thermoacoustic instability.

(Fig. 3.1c). Here, thermoacoustic instability is comprised of large amplitude periodic

oscillations. For Test - D (Fig. 3.1d) and Test - E (Fig. 3.1e), we detect only two

dynamical states: intermittency followed by thermoacoustic instability without the

occurrence of a stable combustor operation. However, the time spent in the periodic

epoch of intermittency is higher during Test - E than that for Test - D. The reasons

behind such a difference in the dynamics of the combustor behaviour for the same

operating conditions remain unanswered.

A careful observation of the dynamics of the rocket combustor shows the existence

of three primary dynamical states in the acoustic pressure oscillations. These states

are stable state (low amplitude aperiodicity), intermittency (epochs of periodicity
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Data-set Dynamical transitions observed
Test - A Stable state
Test - B Intermittency
Test - C Stable state ⇒ Intermittency ⇒ Thermoacoustic instability
Test - D Intermittency ⇒ Thermoacoustic instability
Test - E Intermittency ⇒ Thermoacoustic instability

Table 3.1: The list of data-sets chosen for analysis and the corresponding dynamical
transitions observed in each test.

interspersed between epochs of aperiodicity in an apparently random manner), and

thermoacoustic instability (epochs of sustained periodicity). During the periodic epochs

of intermittency and thermoacoustic instability, we observe that the periodic waveform

nearly takes the shape of a saw tooth wave profile. Further, we notice that the state

of intermittency always precedes the onset of thermoacoustic instability. Such an

observation is different from previous descriptions of the onset of thermoacoustic

instability in rocket combustors where the transition from small amplitudes to large

amplitudes is reported to occur through an exponential growth (Hart and McClure,

1959; Hart et al., 1964; Culick, 1966, 1970; Bloxsidge et al., 1988). Recently, Orth

et al. (2018) band-pass filtered the time series of acoustic pressure oscillations in the

same model multi-element combustor, analyzed in this thesis. When the frequencies

pertaining to the fundamental mode are band-passed, they observed the presence of an

exponential growth rate in the amplitude of oscillations. They also observed a similar

exponential growth rate when the harmonic frequencies are band-passed. However, we

analyze the time series with its entire frequency content preserved. We characterize the

dynamical features of the representative portions of the time series pertaining to these

three dynamical states observed during different trials of experiments. We choose stable

state of Test - A, intermittency from Test - E, and thermoacoustic instability from Test -

E. Next, we will look into the frequency content present in these three dynamical states.

The amplitude spectrum with a frequency resolution of 12 Hz generated out of the fast

Fourier Transform (FFT) algorithm is plotted in Fig. 3.2. For stable state (Fig. 3.2a),

we observe that the amplitude spectrum is broadband, containing a wide range of
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Fig. 3.2: The amplitude spectrum obtained through fast Fourier transform (FFT) with a
frequency resolution of 12 Hz for (a) stable state of Test - A, (b) intermittency
of Test - E, and (c) thermoacoustic instability of Test - E. The zoomed insets
are shown for (a) and (b).

frequencies at smaller amplitudes. During intermittency (Fig. 3.2b), we observe a

dominant peak emerging around 2500 Hz amidst the neighbouring band of frequencies.

During thermoacoustic instability (Fig. 3.2c), we notice a sharp peak at f1 = 2650 Hz

along with several of its harmonics (nf1) of considerable amplitudes. We have marked

only the first ten harmonics (f2 = 2f1 to f10 = 10f1) for conciseness. The presence of

several harmonics of considerable amplitudes during thermoacoustic instability is due

to the spiky nature of the signal caused by the steepening of the compression wave front

into a shock wave (Tyagi and Sujith, 2003b; Flandro et al., 2007). The shift in the

dominant frequency in time is attributed to the increase in mean temperature during the

transition.

3.2.1 Phase space reconstruction

To probe the hidden features of the dynamics during each state, we reconstruct the

phase space traced by the acoustic pressure oscillations. Towards this purpose, we need

to evaluate the optimum time delay and minimum embedding dimension for each state.

Further, to estimate the optimum time delay, we plot the average mutual information

(AMI) for different time lags (Fraser and Swinney, 1986) as shown in the first column

of Fig. 3.3. AMI measures the mutual dependence of the signal and its delayed version

at two different time instants. The first minima of the AMI can be used as the optimum
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time delay for the construction of the phase space. However, we observe that the

optimum time delay cannot be unambiguously determined using AMI (Fig. 3.3a-c), due

to the difficulty in clearly identifying the first local minima, especially in Fig. 3.3b,c.

Hence, we turn to the autocorrelation function (ACF) to estimate the optimum time

delay (Nayfeh and Balachandran, 2008).

Fig. 3.3: (a-c) Average mutual information (AMI) and (d-f) autocorrelation function
(ACF) are evaluated to estimate the optimum time delay required for the
construction of phase portrait during (a, d) stable state of Test - A, (b, e)
intermittency in Test - E, and (c, f) thermoacoustic instability of Test - E.
The dashed line in (d, e, f) indicate the zero crossing delay, selected as the
optimum time delay.

Autocorrelation function (ACF) calculates the linear correlation between a time series

and its delayed copy of the same time series. The value of ACF ranges between -1 to 1.

The optimum time delays obtained from ACF corresponds to the first zero crossing in

the plot, which are denoted by dashed lines in (Fig. 3.3d-f). The corresponding optimum

time delays for stable state, intermittency, and thermoacoustic instability are 0.04 ms,

0.136 ms and 0.084 ms, respectively.

Further, we need to estimate the minimum embedding dimension required for phase

space reconstruction. We rely on Cao’s method (Cao, 1997) to identify the minimum

embedding dimension. The two parameters: E1 and E2 are evaluated for a range
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Fig. 3.4: (a-c) The optimum embedding dimension required for phase space
reconstruction is obtained by Cao’s method, evaluating quantities, E1 (▼) and
E2 (•), during (a) stable state of Test - A, (b) intermittency in Test - E, and (c)
thermoacoustic instability for Test - E, respectively. The optimum embedding
dimension are denoted by dashed lines.

of embedding dimensions from 1 to 20. E1 measures the ratio of mean distances

between two points in the phase space in two successive embedding dimensions. When

a sufficient embedding dimension is attained, E1 attains a value close to 1 and remains

constant for further increments in embedding dimension. E2 is a quantity which can

distinguish between deterministic and stochastic signals. For a completely random

signal, E2 remains nearly unity for any embedding dimension. For deterministic

signals, E2 varies for lower embedding dimensions and saturates beyond a certain

embedding dimension.

The optimum embedding dimension is the dimension, denoted by dashed lines in

Fig. 3.4a-c, for which E1 and E2 starts to become invariant with further increase

in dimension (d). In addition, we observe that E2 is not unity for some embedding

dimensions, denoting that the dynamics during stable state are not completely

stochastic. The minimum embedding dimension chosen is 13 for stable state (Fig. 3.4a),

and 10 for both intermittency (Fig. 3.4b) and thermoacoustic instability (Fig. 3.4c).

With the optimum time delay obtained for each state, we plot the three-dimensional

phase portraits for stable state, intermittency, and thermoacoustic instability in

Fig. 3.5a-c, respectively. We observe that the phase portraits during stable state

in Fig. 3.5a is cluttered and has no distinct repeating pattern corresponding to the

low amplitude aperiodic oscillations. However, during thermoacoustic instability in
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Fig. 3.5: The reconstructed phase portraits for (a) stable state of Test - A, (b)
intermittency in Test - E, and (c) thermoacoustic instability in Test - E.
The phase portraits are reconstructed using the corresponding time interval
depicted for each dynamical state. The trajectory traced out by the phase
portrait for one cycle of oscillation during thermoacoustic instability is
enumerated from 1-7 in the corresponding waveform shown in the inset.

Fig. 3.5c, we obtain a pattern (marked 1-7 in order) which repeats at equal intervals

of time. The phase portrait of this state shows a stretched trefoil-knot like structure,

similar to that observed in gas phase detonations(Abderrahmane et al., 2011). This

structure is radically different from the phase portrait of thermoacoustic instability

observed for gas turbine combustors, which mostly trace out a ring or elliptical orbit

(Kabiraj et al., 2012; Pawar et al., 2016). During thermoacoustic instability in this

rocket combustor, due to an increase in the speed of sound because of rising temperature

and convective effects in the compression phase, the waveform tends to catch up with

the expansion front(Hirschberg et al., 1996; Tyagi and Sujith, 2003a). This leads to

the steepening of the compression wave front into a shock wave. As a result, the

pressure wave front has a faster growth in the amplitude during the compression phase

compared to the slow decay of the oscillation in the expansion phase. This characteristic

behavior is captured faithfully in the corresponding phase portrait wherein the phase

space trajectory spends relatively shorter times during the compression phase (points

1-2 in Fig. 3.5c) compared to the expansion phase (points 2-7 in Fig. 3.5c) of the signal.

During intermittency in Fig. 3.5b, we obtain a phase portrait bearing some resemblance

61



to the phase portrait during thermoacoustic instability. The presence of amplitude

modulation during periodic oscillations and the aperiodic oscillations corrugates the

phase portrait of intermittency.

3.2.2 Return maps

A Poincare map or the first return map preserves many properties of periodic, quasi-

periodic and chaotic orbits(Nayfeh and Balachandran, 2008). Hence, we use a return

map, tracking the successive local maxima of the signal, to probe the dynamics.

In Fig. 3.6, the first return map tracking the local maxima of the acoustic pressure

oscillations during stable state, intermittency: aperiodic and periodic epochs, and

thermoacoustic instability are plotted.

The trajectory traced by the return map helps us in identifying the precise dynamical

state which is sometimes not apparent from the visual inspection of the three-

Fig. 3.6: Poincare sections or first return maps of the acoustic pressure oscillations
during (a) stable state in Test - A, (b) aperiodic portion of intermittency in Test
- D, (c) periodic portion of intermittency in Test - E, and (d) thermoacoustic
instability of Test - E.
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dimensional phase portrait. In a first return map, a point is observed for limit cycle

oscillations with period-1, a ring is observed for the quasiperiodic oscillations, and a

clutter of points is observed for a chaotic signal(Hilborn et al., 2000). Also, if the

consecutive dots traced in the return map of period-n oscillations are joined, it results

in the trajectory of a n-sided polygon.

The aperiodic oscillations (see Fig. 3.6a,b) during stable state and intermittency show

a clutter of trajectories without exhibiting any specific pattern. However, for periodic

oscillations (Fig. 3.6c,d) during both intermittency and thermoacoustic instability, we

observe the random occurrence of period-3 and period-4 oscillations as shown by

triangles (I-II-III) and quadrilaterals (1-2-3-4), respectively, in their first return maps.

This further suggests that the state of thermoacoustic instability is non-trivial and is

not the same as the period-1 limit cycle oscillations which is usually observed for gas

turbine engines. It is particularly interesting to note that a similar switching between

period-2 and period-3 limit cycle dynamics have been reported recently for a full-scale

solid rocket motor (Guan et al., 2018). At this juncture, we must note that caution must

be exercised while applying tools designed to detect conventional period-1 limit cycle

oscillations as they might fail for such complex period-3 and period-4 oscillations.

3.2.3 Recurrence plots

The phase portraits of high-dimensional attractors are usually visualized by projecting

them into the lower dimensions. However, a lot of information will be lost when the

phase space is condensed into lower dimenisons. Eckmann et al. (1995) proposed

a visual representation tool, known as recurrence plot that enables us to investigate

the behavior of n-dimensional phase space trajectory through a two-dimensional

representation of its recurrences. The recurrence plot contains unique patterns for each

kind of oscillation. For example, periodic oscillations are represented by continuous

diagonal lines, because the trajectory of such signals revisits roughly the same region of

phase space in equal intervals of time. For random signals, we obtain a grainy structure
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Fig. 3.7: Recurrence plots (RP) for the dynamics of (a) stable state (along with a
zoomed inset) in Test - A, (b) aperiodic epoch of intermittency (along with its
zoomed inset) in Test - D, (c) periodic epoch of intermittency in Test - E, and
(d) thermoacoustic instability of Test - E. The recurrence plots are obtained
for the corresponding time interval depicted for each dynamical state (a-d) to
appropriately detect the patterns. A threshold of 20% of the maximum size of
the corresponding attractor is utilized. The parameters such as time delay and
embedding dimension are the same as that discussed in Section IVB.

in the recurrence plot. For chaotic signals, unlike random signal, one would obtain

isolated short lines parallel to the main diagonal line (Hołyst et al., 2001). Therefore,

the pattern in a recurrence plot enables us to quantify the temporal dynamics of chaotic,

quasiperiodic, intermittent, periodic, and stochastic signals (Webber Jr and Marwan,

2015). For a detailed description on recurrence plots, we encourage the reader to see

Marwan et al. (2007).

Recurrence plots (RP) for the acoustic pressure oscillations during the stable state,

intermittency (both aperiodic and periodic epochs), and thermoacoustic instability are
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shown in Fig. 3.7. The black patches during the occurrence of aperiodic oscillations in

Fig. 3.7a,b correspond to the trajectory trapped within a small region in the phase space.

The short (or broken) lengths of diagonal lines in RP (see zoomed inset in Fig. 3.7a,b)

during both stable state and aperiodic region of intermittency imply deterministic

behavior, and could possibly suggest chaotic dynamics for the aperiodic oscillations.

However, dedicated tests have to be performed before confirming chaotic dynamics.

The recurrence plots during periodic oscillations of intermittency (Fig. 3.7c) and that of

thermoacoustic instability (Fig. 3.7d) show continuous diagonal lines, indicating strong

deterministic characteristics in the dynamics. However, during the periodic portion of

intermittency, the diagonal lines are relatively broken due to the gradual decrease in the

amplitude of oscillations in the signal.

3.2.4 Multifractal analysis

Many complex signals exhibiting aperiodic oscillations contain certain structural

characteristics, which are difficult to be captured by various tools discussed so far.

Fractal theory can be used to describe such complex signals that are composed of

multiple time scales. By applying fractal analysis to thermoacoustic systems, Nair and

Sujith (2014) showed that the stable state (i.e., a state of combustion noise) in a turbulent

combustor has multifractal features and these multifractal signatures vanish at the onset

of thermoacoustic instability. By following their approach, we study the multifractal

behavior of acoustic pressure oscillations observed in the model rocket combustor.

In Fig. 3.8a, we plot the variation of generalized Hurst exponents with the variation in

the order-q for different dynamical states observed during the onset of thermoacoustic

instability. We notice that, during stable state and intermittency, the large scale

fluctuations and small scale fluctuations scale differently as the variation ofH(q) shows

a different trend for both the states. Contrary to this, H(q) shows a negligible change

with variation in q during thermoacoustic instability, indicating the existence of a single

scale during this state.
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Fig. 3.8: Multifractal analysis is performed on the stable state (•) in Test - A,
intermittency (+) in Test - E, and thermoacoustic instability (▼) of Test -
E. (a) Generalized Hurst exponents, (b) mass exponents, and (c) multifractal
spectrum are plotted to characterize the multifractal features of the various
dynamics observed in the rocket combustor. The MFDFA method of a third
order polynomial fit and a q range of -5 to 5 is used. The window size of 2 -
10 cycles of 2650 Hz oscillations is used, as described in Section IIC.

Further, we observe a nonlinear variation of the mass exponents, τ(q), with scaling

order q in Fig. 3.8b for all the states except thermoacoustic instability. Generally, a

linear and nonlinear variation of τ(q) represents monofractal and multifractal behavior

of the signal, respectively(Ihlen, 2012). This indicates that the states of stable state

and intermittency exhibit multifractal behavior which reduces to a monofractal-like

behavior during thermoacoustic instability. Also, the resulting multifractal spectra

shown in Fig. 3.8c for stable state and intermittency exhibits a wide spectrum spanning

several values of singularity exponents (α). Thus, the variation of generalized Hurst

exponents, mass exponents, and the multifractal spectrum strongly point out to the

presence of multifractal nature in these oscillations.

During thermoacoustic instability, this multifractality is lost. This loss of multifractality

is evident from the invariant nature of H(q), the linear variation of τ(q) with q, and

the collapse of the multifractal spectrum to a shorter arc centred around a non-zero

α. This non-zero value of α, and the non-integer value of the H(q) further confirms

the monofractal-like behavior of acoustic pressure signals during thermoacoustic

instability.

Additionally, the multifractal spectra during stable state and intermittency display a

right skewed behavior (Fig. 3.8c). This right skewness suggests that the multifractal
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dynamics of the pressure oscillations is determined predominantly by the small scale

fluctuations. It is also reflected in the reduction in the slope of generalized Hurst

exponents for positive order q, indicating that the qth-order root mean square values

are insensitive to the local fluctuations with large magnitudes (Ihlen, 2012). Having

studied the dynamical features of acoustic pressure oscillations during the onset of

thermoacoustic instability, we now proceed to characterize the dynamical transitions

observed in the system dynamics of rocket combustor quantitatively.

3.3 MEASURES TO DISTINGUISH DIFFERENT DYNAMICAL STATES

We have shown that a thermoacoustic system can exhibit different dynamical states

such as stable state, intermittency, and thermoacoustic instability. A measure which

can distinguish between these different dynamical states would be an ideal tool for

engineers and simulators to help in assessing the stability of a rocket combustor.

In Fig. 3.9, we show several measures which exhibit a quantitative change during

the transition from stable state to thermoacoustic instability. In Fig. 3.9a, we plot

the time series of acoustic pressure without removing the mean pressure, during

Test - C containing the transition from stable state to thermoacoustic instability via

intermittency, for which the measures are evaluated. The variation of conventional

measures employed to detect the transition to thermoacoustic instability such as root

mean square value (Fig. 3.9b), the variance of the oscillations (Fig. 3.9c), and magnitude

of the dominant frequency from the amplitude spectrum (Fig. 3.9d) are plotted. The

entire time series is split into 100 segments of 6 ms interval each for plotting Fig. 3.9b

and Fig. 3.9c. Due to the compromise in the frequency resolution with shorter window

size, we use a relatively larger window interval of 55.6 ms, which resulted in 8 segments

of the actual time series, for plotting Fig. 3.9d.

The variation of both root mean square and variance of the acoustic pressure oscillations

increases progressively as the system dynamics approaches thermoacoustic instability.

The non-monotonic trend in the variation of these measures prior to thermoacoustic
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Fig. 3.9: (a) The time series of acoustic pressure (p) during Test - C containing the
transition from stable state to thermoacoustic instability via intermittency.
The variation of (b) root mean square value (p′rms), (c) the variance of the
oscillations (p′var), (d) the magnitude of the dominant frequency from the
amplitude spectrum (|Amax|), (e) maximum of cross correlation (CCmax), (f)
ratio of determinism to recurrence rate (RATIO), (g) Hurst exponent (H),
and (h) multifractal spectrum width (α2 − α1) are plotted to distinguish the
dynamical transitions across stable state, intermittency, and thermoacoustic
instability. The measures are based on the fluctuations (p′) about the mean
pressure, rather than p itself. The dashed vertical lines demarcating the three
dynamical states are marked by visual inspection. The end times of the
time windows for each measure considered are used to mark their respective
abscissas.
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instability is due to the presence of intermittency. The magnitude of the dominant

frequency in the amplitude spectrum calculated with a frequency resolution of 18 Hz

exhibits a gradual variation from stable state to thermoacoustic instability. However,

to determine the onset of thermoacoustic instability from these measures, an apriori

knowledge of the expected amplitude levels out of the combustor is required. Armed

with the knowledge of the amplitude levels during the onset of thermoacoustic

instability in a combustor, one can determine whether thermoacoustic instability is

attained or not. However, in most scenarios, the amplitude levels in a combustor are

difficult to predict as they depend highly on the operating conditions, working fluids

etc. Even if this is overlooked, using these measures, we cannot robustly distinguish

the transition between the states of stable state, intermittency, and thermoacoustic

instability.

In an attempt to overcome the shortcomings of these conventional measures, Orth

et al. (2018) introduced the maximum of cross correlation (CCmax) as a measure

to distinguish between stable state and thermoacoustic instability. CCmax, bounded

between -1 to 1, captures the highest similarity between two time series. In Fig. 3.9e, we

show the variation of the maximum value of the cross correlation (CCmax) between the

acoustic pressure signals acquired at two different locations in the combustor (labelled

as ‘Fuel Manifold Pressure’ and ‘Right Wall Pressure’ in Fig. 3.1b). We observe that

CCmax is unable to distinguish between intermittency and thermoacoustic instability

as the values of CCmax are nearly the same during intermittency and thermoacoustic

instability. Next, we show the variation in the recurrence based measure: the ratio

of determinism to recurrence rate (RATIO) in Fig. 3.9f. We note that the value of

RATIO starts decreasing with the onset of intermittency and decays to almost zero

during thermoacoustic instability. CCmax and RATIO are plotted for a window size

of 7.5 ms corresponding to 20 cycles of oscillations. The robustness of RATIO in

distinguishing the different dynamical states for a range of recurrence thresholds is

discussed in Appendix. A.
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Finally, the variation of fractal measures, Hurst exponent (H) in Fig. 3.9g and

multifractal spectrum width (α2 - α1) in Fig. 3.9h are plotted to distinguish the

dynamical transitions across stable state, intermittency, and thermoacoustic instability.

Here, α2 and α1 are the extreme values of the singularity exponents covered by

the multifractal spectrum. The multifractal spectrum width (α2 - α1) is calculated

by measuring the range of singularity exponents covered by the spectrum. For the

multifractal measures, a window size of 37.6 ms corresponding to 100 cycles of

oscillations with an overlap of 90 cycles is used. The multifractal spectrum width

drops from near 0.4 to lower than 0.02 during the onset of thermoacoustic instability.

However, the presence of intermittency cannot be detected by this measure. The value

of Hurst exponent (H) varies from around 0.5 during stable state to less than 0.1 during

the onset of thermoacoustic instability. During intermittency, if the value of H drops

below 0.1, this model rocket combustor can be considered to be in the proximity of

an impending thermoacoustic instability. However, the critical Hurst exponent below

which thermoacoustic instability is imminent may vary from system to system. Hence,

RATIO, Hurst exponent, and multifractal spectrum width collectively can be used to

distinguish the combustor operation across all three states for a rocket combustor, as

they possess fixed values for a particular type of dynamics, unlike traditional measures

such as rms value, amplitude of frequency peaks, and variance of the oscillations.

The statistical significance and robustness of the multifractal measures for different

parameters are described in Appendix. A.

Next, in Fig. 3.10, we show that the same measure RATIO can also be used to

detect the transitions from aperiodic to periodic oscillations, and vice versa, in a signal

(see Fig. 3.10a). We compare the efficacy of RATIO as compared to CCmax in

detecting such transitions. We also show the variation of DET and RR in Fig. 3.10c,d,

respectively. We observe that through a windowed variation of CCmax (Fig. 3.10b)

and RATIO (Fig. 3.10e), we can detect the switching between periodic and aperiodic

behavior during intermittency. Here, CCmax is obtained by cross correlating the same
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Fig. 3.10: The time series of (a) acoustic pressure (p) is plotted during the transition
from intermittency to thermoacoustic instability for Test - E. The variation
of (b) maximum of cross correlation (CCmax), (c) determisim (DET ), (d)
recurrence rate (RR), and (e) ratio of determinism and recurrence rate
(RATIO) to detect the aperiodic to periodic transitions, and vice versa. The
blue shaded region corresponds to the long aperiodic epoch of intermittency,
the greeen shaded region corresponds to the periodic epoch of intermittency,
and the red shaded region corresponds to the epoch of thermoacoustic
instability. Zoomed views of normalized pressure signals at the right wall
(p′n) and fuel manifold (p′n,fuel) locations are shown for (i) aperiodic epoch
of intermittency, (ii) periodic epoch of intermittency, and (iii) thermoacoustic
instability, respectively. The end times of the time windows for each measure
considered are used to mark their respective abscissas.
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two pressure signals used to calculate CCmax plotted in Fig. 3.9. Zoomed views of the

normalized pressure time series of the two signals (p′n,fuel and p′n) are plotted for an

aperiodic epoch of intermittency, a periodic epoch of intermittency, and thermoacoustic

instability in Fig. 3.10i-iii. A window size of 2.3 ms corresponding to two hundred

slices of the actual time series is used to calculate all measures in Fig. 3.10. A

smaller window size is necessary to detect the aperiodic-periodic transitions. DET ,

RR and subsequently, RATIO are obtained by calculating the recurrences of the

phase trajectories within a threshold of 20% of the maximum size of the corresponding

attractor. The time delay and embedding dimension are calculated for the entire time

series and are found to be 0.196 ms and 10, respectively.

We observe an uncharacteristically higher value of DET for the aperiodic oscillations,

compared to other combustors (Pawar and Sujith, 2018). The value of DET for both

aperiodic and periodic dynamics in this data (see Fig. 3.10c) remains nearly the same.

The value of DET ∼ 1 suggests the possibility of high deterministic features (Marwan

et al., 2007) in the aperiodic oscillations of the rocket combustor dynamics. This high

determinism value could be a result of the dynamics of the flame front, arising from the

globally unstable hydrodynamic field (Emerson et al., 2012).

On the other hand, the value of RR exhibits a significant increase during the transition

from aperiodic to periodic oscillations (see Fig. 3.10d). Hence, RATIO exhibits a

higher value for aperiodic oscillations and a lower value for periodic oscillations. On

the other hand, for CCmax, we expect a value close to 0 for aperiodic oscillations with

low similarity and a higher value close to 1 for periodic oscillations with large similarity.

The blue and green shaded regions in Fig. 3.10a-e represents an aperiodic epoch and

a periodic epoch, respectively, during intermittency. During the aperiodic epoch, we

observe that CCmax shows lower values while RATIO exhibits larger values. We

observe the opposite behavior in both RATIO and CCmax during the periodic epoch

of intermittency. During thermoacoustic instability (see red shaded region in Fig. 3.10a-

e), the values of both these measures are largely invariant, denoting sustained periodic
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behavior in the system. For this state, we observe that the values of both CCmax and

RATIO are low. The lower value of CCmax is unexpected during thermoacoustic

instability as the dynamics during this state is periodic.

The reason behind the lower value ofCCmax for both periodic and aperiodic oscillations

can be understood from the overlapped plot of the two pressure signals used for the

calculation of CCmax (see Fig. 11i-iii). To aid us in detecting the similarity, the two

time series (p′n,fuel and p′n) are normalized. For the aperiodic epoch of intermittency,

we do not observe any similarity between the two signals (Fig. 3.10i). During the

periodic epoch of intermittency (Fig. 3.10ii), we observe that the two signals follow a

nearly similar trend at a finite non-zero time lag, leading to higher values in CCmax.

On the contrary, during the state of thermoacoustic instability (Fig. 3.10iii), we notice

that the time series of p′n,fuel contains significantly higher frequencies, whereas that

of p′n contains lower frequency corresponding to fundamental mode of the combustor

(2650 Hz). This difference in the oscillations of acoustic pressure at different locations

contribute to lower the value of CCmax. Unlike CCmax, we observe that the lower

values of RATIO correctly captures the periodic oscillations during thermoacoustic

instability as well as during intermittency. This suggests that using RATIO is better

than CCmax to unambiguously determine the periodic-aperiodic-periodic transitions in

the acoustic pressure signal observed during the onset of thermoacoustic instability.

We also remark that RR can be a good candidate to distinguish the aperiodic-periodic

transitions if there is a significant variation in RR during the aperiodic-periodic

transitions.

3.4 CONCLUDING REMARKS

In this chapter, the dynamics of acoustics pressure oscillations during the transition from

stable state to thermoacoustic instability in a model multi-element rocket combustor is

analyzed. We observe that the transition from small amplitude stable state to large

amplitude thermoacoustic instability occurs through intermittency. Intermittency is a
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dynamical state wherein bursts of high amplitude periodic oscillations appear amidst

epochs of low amplitude aperiodic oscillations, distributed in a seemingly random

manner.

The waveform during thermoacoustic instability is highly nonlinear, consisting of

typically steepened pressure wavefronts leading to the formation of shock waves, and

is significantly different from the sinusoidal limit cycle oscillations typically seen in

gas turbine combustors. As a result, we obtain a characteristic trefoil knot-like shape

of the phase space attractor during thermoacoustic instability. Further, we detect

the dynamical switching between possibly period-3 and period-4 oscillations in an

apparently random manner during thermoacoustic instability and the periodic epochs

of intermittency. Such complex limit cycle dynamics are seldom seen in gas turbine

combustors.

Through a suitable multifractal analysis, we detect the collapse of multifractality

during the onset of thermoacoustic instability. We present a recurrence based measure

(RATIO) and two fractal based measures (multifractal spectrum width and the Hurst

exponent), that can be used to distinguish between different states of combustor

operation. We found that these measures are more robust than the existing measures

such as root mean square of the oscillations, spectral amplitude, maximum of cross

correlation etc. in distinguishing the dynamical state of a rocket engine. The measures

illustrated in this chapter can be used to validate the CFD multi-fidelity simulations

used for optimizing the stability and performance metrics of the rocket combustor.

Summarizing, the signals pertaining to rocket combustors are different from their gas

turbine counterparts and other derived laboratory combustors due to the significant

contribution of nonlinearities in the rocket combustor. Hence, extreme care must be

exercised while extending the results obtained for gas turbine combustors to rocket

combustors.
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CHAPTER 4

Slow-fast time scales in the wave steepened limit cycle oscillations

Many complex systems exhibit periodic oscillations comprising slow-fast timescales.

In such slow-fast systems, the slow and fast timescales compete to determine the

dynamics. In this chapter, we perform a recurrence analysis on simulated signals from

paradigmatic model systems as well as signals obtained from experimental data of a gas

turbine-type combustor and the model rocket combustor, each of which exhibit slow-

fast oscillations. We find that slow-fast systems exhibit characteristic patterns along the

diagonal lines in the corresponding recurrence plot (RP). We discern that the hairpin

trajectories in the phase space leads to the formation of line segments perpendicular

to the diagonal line in the RP for a periodic signal. Next, we compute the recurrence

networks (RNs) of these slow-fast systems and uncover that they contain additional

features such as clustering and protrusions on top of the closed ring structure. We show

that slow-fast systems and single timescale systems can be distinguished by computing

the distance between consecutive state points on the phase space trajectory and the

degree of the nodes in the RNs. Such a recurrence analysis substantially strengthens our

understanding of slow-fast systems which do not have any accepted functional forms.

4.1 SLOW-FAST TIMESCALES IN DIVERSE PHYSICAL SYSTEMS

The rhythmic beating of the heart (Glass, 2001), periodic firing of neurons (Izhikevich,

2007), spontaneous oscillations of chemical reactions (Zhabotinsky, 1991), dangerous

self-excited oscillations in suspension bridges (Lazer and McKenna, 1990), glacial

oscillations (Dansgaard et al., 1984), high amplitude oscillations in aircraft engines and

rocket engines (Lieuwen and Yang, 2005) are a few examples of the various periodic

phenomena we come across in our lives. Most of these phenomena exhibit oscillations

This chapter is published in Kasthuri, P., I. Pavithran, A. Krishnan, S. A. Pawar, R. I. Sujith, R. Gejji,
W. E. Anderson, N. Marwan, and J. Kurths (2020). Recurrence analysis of slow-fast systems. Chaos,
30(6), 063152.



at a preferred timescale known as the time period of the oscillation. However, many

periodic phenomena are inherently made up of more than one timescale in an oscillation

(Bertram and Rubin, 2017). Such periodic phenomena are popularly classified as slow-

fast oscillations (Bertram and Rubin, 2017). Such systems are found across a wide

range of applications ranging from medicine (Kantz and Schreiber, 1998), economics

(Lordon, 1997), physical sciences (Leeman et al., 2016), earth sciences (Vettoretti and

Peltier, 2018) to engineering (Johnson and Sutin, 2005; Vallaitis et al., 2008; Bruun

et al., 2012).

For example, let us consider the electrocardiogram (ECG) signal, wherein the electrical

activity in the heart is recorded using a set of electrodes. A typical cycle of an

ECG signal is defined by different processes such as atrial depolarization, ventricular

depolarization, and ventricular repolarization (Chen et al., 2014). Each of these

processes (designated as P wave, QRS complex, and T wave in one cycle of the ECG

signal) have an intrinsic timescale. A characteristic feature of slow-fast systems is that

their periodic waveforms are radically different from those of harmonic oscillators.

For the most simple case of a slow-fast system containing two timescales, a slow

growth/decay is accompanied by a fast decay/growth. As a result, a slow-fast system

could spend more time in the growth or decay phase. To present an example in electrical

engineering, the charge and discharge of a capacitor (Millman, 2010) is characterized

by a slow and fast timescale, respectively. In a similar manner, the periodic stick-

slip motion of a bowed violin string exhibits more than one timescale (Schumacher

et al., 2005). Recently, Kasthuri et al. (2019) showed the presence of bursting and

mixed-mode oscillations in a premixed matrix burner with several interacting laminar

flames. They demonstrated that these oscillations occurred due to the interaction of

slow timescale associated with temperature fluctuations and fast timescale with acoustic

pressure fluctuations.

In nonlinear dynamics literature, the term slow-fast systems have also been used

to describe multiple timescales that cause periodic amplitude modulations, bursting
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Fig. 4.1: The slow and fast timescales during (a) periodic bursting in the Izhikevich
neuronal model (Izhikevich, 2003) and (b) amplitude modulated sine wave.
(c) The slow and fast regions within a cycle of oscillation in the Van der Pol
oscillator. We study slow-fast signals akin to (c) in this chapter.

oscillations, and mixed-mode oscillations (Desroches et al., 2012). Hence, we illustrate

the slow-fast systems that we discuss in this chapter along with other slow-fast systems

in Fig. 4.1. Bursting oscillations (Fig. 4.1a) are characterized by epochs of large

amplitude periodic oscillations followed by quiescence (Kuehn, 2015). Mixed-mode

oscillations are another class of periodic oscillations that exhibit amplitude switching

between two or more amplitude states in the signal. In periodically modulated waves

(Fig. 4.1b), the amplitude envelope of the signal oscillates at a slow timescale over a fast

oscillating signal. In these types of slow-fast systems, the slow timescale corresponds

to the modulation of the envelope of the signal, while the fast timescale pertains to the

high frequency oscillation in the signal.

However, unlike all these types of periodic oscillations, the slow-fast systems described

in this chapter contain all the slow and fast timescales within one period of oscillation

(Fig. 4.1c). Such slow-fast systems have been long studied under the guise of

relaxation oscillators. These oscillators are a class of limit cycle oscillators which are

characterized by a non-sinusoidal periodic waveform (Van der Pol, 1926). Relaxation

oscillations have been modelled using several models such as the Van der Pol oscillator

(Van der Pol, 1926), Fitz-Hugh-Nagumo oscillator (FitzHugh, 1961), and LEGION
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(Wang and Terman, 1995).

Traditionally, slow-fast systems with a pre-established set of governing equations have

been solved using conventional methods from linear theory. A classical technique

is to reduce the set of governing equations to the weak or the strong nonlinear limit

(Strogatz, 2018), whenever the two timescales are widely separated. Then, the system

of equations is solved to obtain the resultant amplitudes and phases of the signal. Apart

from this method, various other techniques such as perturbation theory, method of

multiple timescales, and the method of averaging exist (Nayfeh and Balachandran,

2008). However, experimental and other real-world signals rarely have any well-

defined functional forms, which can be solved using these methods. Moreover, the

timescales in practical systems are seldom widely separated. All these obstacles render

the analysis of such signals intractable. Despite the abundance of slow-fast periodic

signals and their known association with nonlinear dynamics, they have not been viewed

under the microscope of recurrence theory to obtain insights. Such an analysis would

potentially pave way to detect the presence of multiple timescales in the system and

its accompanying effects on the dynamics of the system. Armed with this knowledge,

recurrence plots and recurrence networks can be used to extract hidden features of high

dimensional systems.

In this chapter, we first characterize the dynamics of prototypical slow-fast signals

obtained from well-established models, i.e., Van der Pol (VDP) model, a modified

form of Izhikevich model, and the Hodgkin-Huxley model. We use nonlinear time

series methods based on recurrence analysis of the phase space trajectory such as

recurrence plot (RP) (Marwan et al., 2007) and recurrence network (RN) (Zou et al.,

2018) to distinguish the properties of these signals. Following the same methodology,

we analyze two high-dimensional slow-fast signals of thermoacoustic oscillations from

experiments - the time series of unsteady heat release rate signal from a model gas

turbine combustor (Pawar et al., 2017), and the acoustic pressure signal obtained from

a model rocket combustor (Orth et al., 2018).

78



4.2 RECURRENCE NETWORKS

Using the method of phase space reconstruction, we can visually unravel the dynamics

of nonlinear systems from its phase space attractor only in low dimensions (d ≤ 3).

However, a vast number of real-world signals tend to have higher dimensions (d >

3). As a result, the fundamental property of recurrence of a phase space trajectory is

exploited to understand the underlying hidden features of high-dimensional nonlinear

systems (Eckmann et al., 1995; Marwan et al., 2007). As described in Chapter. 3, we

obtain different patterns in the recurrence plot (RP) dependent on the characteristics

of the signal. The patterns in RPs have garnered the attention of physicists in many

instances (Marwan, 2008). However, understanding such patterns in the RPs of slow-

fast systems have not yet been probed, to the best of our knowledge.

One of the methods to select a recurrence threshold (ϵr) is to fix the recurrence

rate (Marwan et al., 2007; Kraemer et al., 2018) (RR). RR is defined as RR =

1
n2

∑n
i,j=1Rij . It estimates the percentage of recurring points in a RP. We observe that

a value lower than the optimum RR fails to completely capture the periodicity in the

signal and is reflected as broken diagonal lines in the RP. In this chapter, an optimum

value of RR is selected after careful consideration for each slow-fast systems.

Recurrence networks (Marwan et al., 2009) are a class of networks through which high-

dimensional systems can be understood. A recurrence network (RN) comprises of phase

space points in time as nodes whose links are based on recurrences of these state points

in the phase space. Similar to the RPs, we can create a ϵr - recurrence network (Marwan

et al., 2009; Donner et al., 2010; Zou et al., 2018), where ϵr is the optimal recurrence

threshold. A value higher than the optimum value results in superfluous connections

in the RN, distorting the network topology. Whereas a lower ϵr would not capture the

recurrence of trajectories in the phase space, leading to an underdeveloped network

topology. The topology of the RN has been found to preserve the phase space of the

high-dimensional nonlinear system (Godavarthi et al., 2017). We also show the effect

of embedding dimension on the RN in Appendix. B.
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To construct a RN, we require an adjacency matrix A, to be computed from the

recurrence matrix R for an ϵr - threshold,

Aij = Rij − δij (4.1)

where δ is the identity matrix of the same size as R and is used to remove self-

connections. If the distance between the state space points is within the ϵr - threshold,

then, Aij = 1, and the corresponding two nodes are connected. Else, the two nodes

remain disconnected, and Aij = 0. Once the adjacency matrix is constructed for all

pairs of nodes, several network measures can be computed from the RN, quantifying the

geometrical structure of the phase space attractor (Donner et al., 2010, 2011). Using the

network properties obtained from the RN, a number of studies have used RN to study

the dynamical features of diverse systems (Gao et al., 2013; Godavarthi et al., 2017;

Gotoda et al., 2014; George et al., 2019).

We visualize the RN using the open-source network analysis platform, Gephi (Bastian

et al., 2009). The geometric feature of RN is attributed by a force directed algorithm

known as ‘Force Atlas’ in Gephi, where the connected nodes are attracted to each

other, while the disconnected nodes are repelled from each other. An appropriate RN

visualization is achieved when the forces are balanced, leading to a static RN. Each

node in the RN is color coded based on degree, a network property (Barabási et al.,

2016). Degree of a node i (Ki) refers to the number of connections node i has to all

other nodes in the network and is calculated as,

Ki =
n∑

j=1

Aij. (4.2)

Using recurrence plots and recurrence networks, we progressively investigate the

recurrence properties of slow-fast systems from low-dimensional systems to high-

dimensional systems. As case studies for low-dimensional systems, we consider the

Van der Pol (VDP) oscillator and the modified signal derived out of Izhikevich’s spiking
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neuron model (Izhikevich, 2003). We consider the Hodgkin-Huxley model (Izhikevich,

2007; Díaz et al., 2016) as a case for studying high-dimensional prototypical slow-fast

signals. We, then, analyze the time series of heat release rate oscillations obtained

from experiments in a laboratory-scale gas turbine type turbulent combustor (Pawar

et al., 2017) and the acoustic pressure signal from a laboratory-scale model multi-

element model rocket combustor (Orth et al., 2018), during the state of thermoacoustic

instability, to understand the recurrence dynamics of slow-fast signals in higher

dimensional physical systems.

4.3 RECURRENCE ANALYSIS OF LOW-DIMENSIONAL PROTOTYPICAL

SIGNALS

Prior to understanding slow-fast systems, we analyze a harmonic signal, namely a sine

wave of unit amplitude and time period of 2π (see Fig. 4.2a), which is definitely a

single timescale system. The phase space of the sine wave is a circular loop structure

(Fig. 4.2b), wherein the phase space trajectory evolves at a uniform speed. Here, the

uniform speed of the phase space trajectory is attributed to successive state points on

the trajectory separated by equal distances in the phase space. In the corresponding

RP (Fig. 4.2c), we observe only equally spaced, non-interrupted diagonal lines with

spacing equal to the time period of the oscillation. The corresponding RN topology of

the sine wave (Fig. 4.2d) shows a circular loop filled up with same degree nodes.

Now, we start analyzing slow-fast systems where we first consider the VDP system

(Van der Pol, 1926), which is perhaps the most studied slow-fast system. Its governing

equations are

ẋ = µ(y + x− x3

3
),

ẏ = − 1
µ
x,

(4.3)

where µ is referred to as the nonlinearity parameter to obtain relaxation type

oscillations. We fix µ = 2 for the current analysis. The time series of variables, x(t)

and y(t) of Eq. 4.3, are plotted in Fig. 4.3a. The corresponding phase portrait exhibits a
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Fig. 4.2: (a) The time series of a sine wave of unit amplitude and time period
2π, sampled at 100 Hz. (b) The corresponding reconstructed phase space
calculated for τopt = 157 time steps and d = 2, (c) RP along with a zoomed
view, and (d) RN.

closed-loop, confirming the periodicity of the time series (Fig. 4.3b). However, unlike

the phase space of the harmonic signal (Fig. 4.2b), we observe that the phase space

trajectory evolves at different speeds, giving rise to the slow and fast timescales. The

separation between successive state points on the phase space trajectory during the fast

epoch is large as compared to that of the slow epoch. As a result, the fast epoch

can be visually discriminated from the slow epoch in the phase space. For the VDP

system, we observe two epochs of slow oscillations (marked as S) and two epochs of

fast oscillations (marked as F ) within a cycle in the original phase space (i.e. a plot

between the variables x and y of the system).

In Fig. 4.3c, we show the time series of the variable x(t) and its delayed copy x(t+ τ).

Here, the delay τopt is obtained by the first zero crossing in the autocorrelation function

(ACF). Unlike the original phase space (Fig. 4.3b), in the reconstructed phase space of x

(see Fig. 4.3d), we obtain four epochs of slow and fast oscillations (marked as S and F ,

respectively) within a cycle of oscillation. This exercise shows that systems containing

slow-fast timescales need to be interpreted carefully based on the technique of phase

space reconstruction, since the number of slow/fast regions could be exaggerated with
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Fig. 4.3: (a) The time series of x and y of the VDP system for µ = 2. (b) The original
phase space between x and y. (c) The time series of x and its delayed
copy, x(t + τ). (d) The reconstructed phase space of x using Takens’ delay
embedding theorem with τopt = 39 time steps and d = 2. The slow and fast
motions in the phase space are marked by S and F , respectively.

respect to that present in the original phase space. We remark that the reconstructed

phase space trajectory of y(t) evolves at a single timescale (not shown here for brevity)

and hence, does not exhibit any slow-fast features. Hence, we must be wary of slow-

fast oscillations in practical scenarios going unnoticed when we are not tracking the

appropriate system parameter.

Further, we plot the RP and the corresponding RN for the VDP system from the original

phase space and from the reconstructed phase space (see Fig. 4.4). The recurrence

matrix is constructed by fixing RR = 0.05. For both RPs, (shown in Fig. 4.4a,c,

respectively), at a first glance, we observe only diagonal lines, indicating periodic

behavior of the system. However, in the corresponding zoomed view of the RP in

Fig. 4.4(a,c), we identify the presence of momentary thick regions along the diagonal

lines of a RP. We attribute these thick regions to slow epochs and the thin regions to the

fast epochs in the evolution of the phase space trajectory. We refer to the presence of

such distinct black patterns on the diagonal lines in a RP of the periodic signal as micro-
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Fig. 4.4: (a) RP along with its zoomed view and (b) the corresponding RN constructed
using the original variables x and y of the VDP oscillator (Eq. 4.3), shown in
Fig. 4.3. (c,d) - The same plots are shown for the phase space reconstructed
using time delay embedding for the variable, x(t). The nodes in RN are color
coded based on their degree. A recurrence threshold of RR = 0.05, d = 2, and
τopt = 39 time steps are used. We observe that the number of slow-fast regions
in the phase space could be exaggerated by time delay embedding.

patterns of RP. Thus, with the analysis of such micro-patterns, we can distinguish the

time instances corresponding to slow regions from the fast regions in the phase space.

The reason behind the occurrence of such a micro-pattern in the RP can be understood

from the evolution of the phase space trajectory at slow and fast timescales. When the

phase space trajectory evolves at a slower rate in the phase space, it spends relatively

more time within an ϵr - threshold as compared to the phase space trajectory for the fast

motion. This leads to the thickening of the diagonal lines in the RP. A similar argument

can be given to explain the thinning of the diagonal lines whenever the phase space

trajectory exhibits fast motion.

Recently, Kraemer and Marwan (2019) reported a tangential motion of phase space

trajectories leading to uneven thickening along diagonal lines. They identified the

temporal correlations (i.e. preceding and succeeding state points fall within the

recurrence threshold) in the data, the presence of noise, and the usage of insufficient

embedding dimension as reasons for this effect. Here, we observe thickening of
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diagonal lines in the RP for the slow epochs in the phase space of the prototypical slow-

fast signal (with no noise) embedded using an optimum embedding dimension. As a

result, we can attribute the thickening of diagonal lines with the temporal correlations

in the slow epoch in the phase space of the slow-fast system.

We observe that the network topologies of both the original and the reconstructed

VDP system are similar to the corresponding phase space observed in Fig. 4.3(b,d).

Thenceforth, the nodes represented in the RNs are color-coded based on the increasing

order of their respective degrees. In the corresponding RNs (see Fig. 4.4b,d,

respectively), we identify distinct regions which exhibit spatial clustering of high degree

(red) nodes amongst the almost uniform distribution of the low degree (blue) nodes. The

spatial clusters of high degree nodes within a cycle represent the region in which the

trajectory moves slowly in the phase space, resulting in a higher number of connections

in the RN. There are two such regions in the RN constructed from the original phase

space (see Fig. 4.4b) and four slow regions in the RN from the reconstructed phase

space (Fig. 4.4d); exactly matching their number in the respective phase spaces shown

in Fig. 4.3(b,d).

Next, we consider another slow-fast signal (see Fig. 4.5a) obtained by modifying the

time series of the variable x from the Izhikevich’s spiking neuron model (Izhikevich,

2003). First, we solve for the variable x in the set of Eqs. 4.4. The dimensionless

parameters a = 0.1, b = 0.2, c = -60, d = 8, and I = 110 are used to obtain spiking

behavior in x(t).

ẋ = 0.04x2 + 5x+ 140− y + I

ẏ = a(bx− y)
(4.4)

The parameters a, b, c and d retain the same meaning as described originally in

Izhikevich (Izhikevich, 2003). Then, the resulting time series is modified, so that

enough number of points are present both during the growth and decay phase of the

oscillations, to get a connected RN.

We observe that one oscillation in this signal is almost symmetric about the growth
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and the decay phase (Fig. 4.5a). The three-dimensional phase space by using τopt =

102 time steps (obtained from ACF) for this signal is visualized in Fig. 4.5b. We find

that the three-dimensional phase space attractor is stretched along the three axes, while

maintaining a closed-loop structure in the evolution of the phase space trajectory for

one cycle of oscillation.

We observe that the RP exhibits continuous equi-spaced diagonal lines, signifying the

periodic dynamics of the signal (Fig. 4.5c). Superimposed on this RP, the micro-patterns

exhibit intricate features unique to this slow-fast system. Similar to the VDP system, the

thickened portions of the diagonal line (see Fig. 4.5c) correspond to the slow motions

in the phase space. A perpendicular line segment occurs amidst two thickened regions

along the diagonal line in the RP, whenever the phase space trajectories traversing in

opposite directions are spaced within the ϵr-threshold. This is also confirmed by the fast

motions of the phase space trajectory at the extremities (or corners) of the phase space

in Fig. 4.5b, where the phase space trajectory reverses its direction abruptly, akin to a

hairpin turn in a mountainous road. Thenceforth, we shall refer to such abrupt reversal

in the trajectory leading to the formation of line segments perpendicular to the main

diagonal line as the hairpin trajectory. It is important to emphasize that there is no such

occurrence of two neighboring phase space trajectories traversing in opposite directions

in the VDP system (see Fig. 4.3c,d). As a result, we do not obtain any perpendicular

lines in the RP of the VDP system.

In Fig. 4.5d, the RN for this signal is plotted. Within one cycle, the trajectory is

predominantly slow with many nodes having a very high number of connections (red

and green). The fast regions in the phase space are present in the protrusions comprising

nodes with low degree (blue). In contrast to the RN of the VDP system, we observe that

only nodes with high and medium degree (red and green colors, respectively) occupy

the ring-like structure. However, the protrusions on the ring are predominantly occupied

by the nodes with low degree (blue). This characteristic behavior must arise out of some

fundamental difference in these two slow-fast systems, which is being reflected on their
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Fig. 4.5: (a) A prototypical periodic spiky signal is derived from a modified output
of Izhikevich’s neuron spiking model (Eq. 4.4). (b) The reconstructed phase
space, (c) RP along with its zoomed view portion, and (d) RN for the signal
shown in (a). The parameters fixed for plotting (b)-(d) are τopt = 102 time
steps, d = 6, and RR = 0.05. Here, we observe characteristic micro-patterns
on the RP and protrusions over the ring-shaped RN.

respective recurrence properties. Also, we identify that the micro-patterns in the RP

and the RN for this prototypical signal are clearly different from the ones obtained for

the VDP system.

4.4 RECURRENCE ANALYSIS OF HIGH-DIMENSIONAL PROTOTYPICAL

SIGNALS

We also analyze the recurrence properties of the well-known Hodgkin-Huxley model,

which exhibits slow-fast oscillations (Izhikevich, 2007; Díaz et al., 2016). It is

represented by,

V̇ =
1

Cm

[
I − gNam

3h(V − ENa)− gKn
4(V − EK)− gL(V − EL)

]
ṁ = αm(V )(1−m)− βm(V )m

ṅ = αn(V )(1− n)− βn(V )n

ḣ = αh(V )(1− h)− βh(V )h.

(4.5)
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Here, V is the the potential, I is the current per unit area, and gi is the maximum

value of conductance where i corresponds to either one of potassium (K), sodium

(Na), or leak channel (L). The gating variables, α and β, control the activation and

inactivation of their respective channels. Variables: m, n, and h are non-dimensional

quantities associated with the potassium channel activation, sodium channel activation,

and sodium channel inactivation, respectively. These variables acquire values between

0 to 1. In Eq. 4.5, the constant parameters used are: ENa = 115 mV, EK = -12 mV, EL =

10.6 mV, gNa = 120 mS/cm2, gK = 36 mS/cm2, gL = 0.3 mS/cm2, and Cm = 1 µF/cm2.

The corresponding steady state values for the gating variables, α and β, are related to

the potential V as,

αh = 0.07 exp

[
−(V + 65)

20

]
, βh =

(
1 + exp

[
−(V + 35)

10

])−1

,

αm = 0.1
V + 40

1− exp
[
−(V+40)

10

] , βm = 4 exp

[
−(V + 65)

18

]
,

αn = 0.01
V + 55

1− exp
[
−(V+55)

10

] , βn = 0.125 exp

[
−(V + 65)

80

]
.

(4.6)

The set of equations are solved using Euler’s method. In Fig. 4.6a, we plot the time

series of the membrane potential, V , obtained for I = 10 nA/cm2 in Eq. 4.5.

We observe that V exhibits a limit cycle behavior with slow-fast timescales. From the

corresponding three-dimensional phase portrait in Fig. 4.6b, we see that certain regions

are slow (marked S), while others are fast (marked F ). The corresponding RP also

exhibits unique micro-patterns on top of the diagonal lines (see Fig. 4.6c). The hairpin

trajectory in its phase space renders a sword-like structure similar to the perpendicular

lines observed in the RP of the prototypical spiky signal (Fig. 4.5c).

The corresponding RN exhibits a protrusion made up of high degree nodes, and several

clusters built of medium degree nodes on top of a ring of low degree nodes (Fig. 4.6d).

Here, hairpins consist of slow epochs. Hence, we obtain protrusions containing high

degree nodes, in stark contrast to the RN of the modified Izhikevich model. Altogether,
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Fig. 4.6: (a) Time series of membrane potential (V ) obtained from Hodgkin-Huxley
model (Eq. 4.5) for I = 10 nA/cm2. (b) The reconstructed phase space, (c) RP
along with its zoomed view portion, and (d) RN, for the signal shown in (a).
The parameter fixed for plotting (b)-(d) are d = 7, τopt = 66 time steps, andRR
= 0.05. We observe a characteristic sword-like pattern in the RP, and, distinct
clusters and protrusion in the RN.

the RN of the Hodgkin-Huxley model contains both features observed in Fig. 4.4b,d

and Fig. 4.5d.

After analyzing the phase space dynamics and recurrence properties of these three

prototypical slow-fast signals along with a sine wave, we understand that the RN

for these slow-fast systems exhibit characteristic features on top of the closed-loop

structure, expected for periodic signals. Moreover, the RP of such systems is manifested

by unique micro-patterns pertaining to slow-fast dynamics over the diagonal lines.

4.5 RECURRENCE ANALYSIS OF HIGH-DIMENSIONAL

EXPERIMENTAL SIGNALS

In order to confirm the aforementioned observations in the slow-fast dynamics of

real-world data, we present the results of the investigation of two different time

series acquired from experiments in a laboratory scale gas turbine-type turbulent

combustor and a model rocket combustor during the state of an oscillatory instability,

known as thermoacoustic instability (Juniper and Sujith, 2018). Here, thermoacoustic
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Fig. 4.7: (a) Time series of heat release rate oscillations (q̇) during thermoacoustic
instability acquired from a laboratory-scale turbulent combustor. (b) The
reconstructed phase space, (c) RP along with its zoomed view portion, and
(d) RN, plotted for the signal shown in (a). The parameter fixed for plotting
(b)-(d) are d = 12, τopt = 20 time steps, and RR = 0.1. The RP and RN for this
experimental signal resemble those of the VDP model to a great extent. More
details regarding this experiment and its operating conditions can be found in
Pawar et al. (2017)

.

instability is a dynamical regime featured by large amplitude, self-sustained periodic

oscillations in the acoustic pressure, p(t), and heat release rate, q̇(t), along with other

dynamical variables of the system. The occurrence of this feedback-driven phenomenon

overwhelms the thermal protection systems, compromises the controllability and

structural stability of gas turbines and rocket engines (Lieuwen, 2012; Juniper and

Sujith, 2018).

First, in Fig. 4.7a,b, we consider the time series of heat release rate oscillations

(q̇(t)) and the corresponding reconstructed phase space obtained during the state of

thermoacoustic instability for a gas turbine type turbulent combustor. We observe that

the time series is spikier than a sine wave, exhibiting a clear departure from sinusoidal

signals. The spikiness in the signal (Pawar et al., 2017) (Fig. 4.7a) is attributed to the

near instantaneous heat release rate as a result of the impingement of the large-scale
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coherent vortex structure carrying fuel-air mixture against the walls of the combustor

(Seshadri et al., 2016).

In the corresponding phase space of the heat release rate (q̇) signal in Fig. 4.7b, we

observe a distorted closed-loop structure, indicative of the non-uniform evolution of the

phase space trajectory due to the presence of slow and fast timescales. However, such

slow and fast timescales are not too separated when compared to the earlier phase space

of prototypical signals. In the RP of this signal (see Fig. 4.7c), we see the presence

of continuous diagonal lines, indicating sustained periodicity in the oscillations. The

corrugations along the diagonal lines arise due to the presence of the slow and fast

timescales in the phase space. The RN for this signal (Fig. 4.7d) looks similar to that

of VDP as there are clusters of high degree nodes (red) on the ring of medium degree

(green) nodes. The clusters pertain to the slow regions in the phase space.

Finally, we investigate the time series of acoustic pressure oscillations (p′(t)) in a

multi-element model rocket combustor during the state of thermoacoustic instability

(Orth et al., 2018) (Fig. 4.8a). We observe that a major portion of the cycle is spent

in the slow relaxation phase with a momentary jump in the pressure due to the fast

compression phase of the signal. Physically, due to an increase in the speed of sound

during the compression phase, the compression side catches up with the expansion side

of the pressure wave. This phenomena, known as wave steepening, results in an abrupt

increase in the amplitude of the pressure oscillations (Tyagi and Sujith, 2003a). Under

favorable conditions, the steepened wave manifests as a shock wave in the flow-field.

Such wave steepened shock waves are commonly observed in the pressure oscillations

in the combustion chambers of rockets (Saenger and Hudson, 1960; Chester, 1964).

The reconstructed phase space of this pressure signal, shown in Fig. 4.8b, is similar to

the phase portrait shown in Figs. 4.5b & 4.6b, wherein the trajectory moves along the

three axes to complete one oscillation cycle. Unlike the usual closed-loop structure

of the phase space trajectory of periodic signals observed in the previous slow-fast

systems, the phase space of the pressure signal exhibits a peculiar shape like a trefoil-
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Fig. 4.8: (a) Time series of acoustic pressure oscillations (p′) during thermoacoustic
instability acquired from a multi-element rocket combustor. (b) The
reconstructed phase space, (c) RP along with its zoomed view portion, and
(d) RN, for the signal shown in (a). The parameter fixed for plotting (b)-(d)
are d = 10, τopt = 21 time steps, and RR = 0.05. The RN and RP of this signal
resembles those of neuron spiking models.

knot. The geometrical difference of the phase space attractor is attributed to the vast

divergence in the slow and fast timescales in the rocket system.

The RP and the RN for the pressure oscillations are plotted in Fig. 4.8c,d, respectively.

The RP contains unique micro-patterns arising due to the presence of spikes. On top

of the diagonal lines that indicate periodicity of the signal, we observe thick regions

divided by a thin region. The thick regions emerge due to the increased trapping of

the phase space trajectory in the slow epoch, while the thin regions correspond to the

fast spike in the phase space. Due to the hairpin trajectories at the extremities in the

reconstructed phase space, the RP of this signal exhibits line segments protruding away

from each diagonal line in a periodic manner.

The RN of this signal looks similar to Fig. 4.5d, based on its topological similarity.

The protrusions in the RN in Fig. 4.8d are made up of high degree (red) nodes, unlike

the RN in Fig. 4.5d where the protrusions are made up of low degree (blue) nodes.

Suitable measures characterizing the RN can be used to benchmark simulations that
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predict thermoacoustic instability in combustion chambers of rocket engines.

4.6 QUANTITATIVE ANALYSIS OF RECURRENCE NETWORK

PROPERTIES

Next, we quantitatively characterize the recurrence network topology obtained from the

reconstructed phase space to unravel the differences between the slow-fast system and

a single timescale system such as a sine wave. The conventional approach in networks

built from time series is to compute the global network measures such as the mean

degree of a network (Barabási et al., 2016).

Fig. 4.9: Histogram of the probability distribution function of the degree of each node
for a sine wave (brown) and the VDP model (black). A bin size of 20 is
used for the representation. The time series of sine wave and VDP model
(µ = 2) are built with a temporal step size of 0.01 s and time period 7.63 s to
ensure same number of points in both the signals. We observe that the degree
distribution is wider in the VDP model as opposed to that of the sine wave.

To ensure that no disparity arises due to the length of the time series and the frequency

of oscillations, we ensure that both the sine wave and the VDP signals are of the same

frequency and amplitude. We find that the mean degree (Kmean =
∑n

i=1Ki/n) remains

the same for both the sine wave and the VDP model (Kmean = 152). In Fig. 4.9, we plot

the histogram of the probability distribution function of the Ki of each node in the RN

of sine wave and the RN of VDP model. We observe that the distribution for the VDP

model has a broader spread compared to a unique value for the sine wave, justifying the

presence of multiple timescales in spite of its periodic behavior of both models.
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Fig. 4.10: Probability distribution of the degree of each node in the RN of (a) modified
Izhikevich model (M. Iz), (b) Hodgkin-Huxley model (HH), (c) heat release
rate oscillations of a gas turbine-type combustor (HRR), and (d) acoustic
pressure oscillations from a laboratory-scale liquid rocket combustor (LRP ).
Similar to the VDP model, the probability distribution of degree of nodes in
the RN of slow-fast systems exhibit a wider spread.

In Fig. 4.10, we show the probability distribution of degrees for the RN constructed for

the modified Izhikevich model (M.Iz), Hodgkin-Huxley model (HH), the heat release

rate oscillations of a gas turbine-type turbulent combustor, and the acoustic pressure

oscillations from the laboratory-scale liquid rocket combustor (LRP ). We observe that

the degree (Ki) has a broad distribution for each slow-fast, in stark contrast to the unique

degree of a sine wave.

Further, the degree distribution for the VDP model is clearly a bimodal distribution

(Fig. 4.9). The degree distributions obtained for both the experimental and synthetic

slow-fast systems are not only broad but also seem to display multimodality. Recently,

Kachhara and Ambika (2019) demonstrated the presence of bimodality in the degree

distributions of the RNs constructed from ECG signals obtained from healthy and

unhealthy subjects. They reported that the presence of both small-scale and large-

scale structures in the phase space to be the reason behind the bimodality. Further,
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the topology of the RNs from ECG signals also exhibited protrusions and clusters of

high/low degree nodes. To unravel the variation of degree of each node (Ki) in the RN,

we again first demonstrate by comparing VDP model and the sine wave. In Fig. 4.11,

we show the variation of Ki along with the distance (PDi) between consecutive points

(x⃗) in the reconstructed phase space for the VDP model and sine wave. Here, the nodes

are labeled according to their temporal appearance in their corresponding phase spaces.

PDi is calculated using Euclidean norm as,

PDi = ∥x⃗i − x⃗i+1∥ i = 1, 2, . . . , n− 1. (4.7)

For every cycle of oscillation in the sine wave, we see that both PDi (Fig. 4.11b) and

Ki (Fig. 4.11c) remain invariant. However, for every cycle of oscillation in the VDP

model, we observe four oscillations in both PDi and Ki, since there are four slow

epochs and four fast epochs in the phase space of the reconstructed signal of the VDP

model (see Fig. 4.3d). Moreover, we see the simultaneous occurrence of lower values in

Fig. 4.11: (a) Time series of variable x of the VDP model (VDP - black curve) for
µ = 2, time period of 7.63 s and a temporal step size of 0.01 s. The time
series of the sine wave (brown curve) of same time period, amplitude and
sampling rate is also shown. The temporal variation of (b) PDi and (c) Ki

are plotted. The shaded rectangle highlights one cycle of oscillation in (a) -
(c). Note that the nodes in a RN are representative of the phase space points
in time.
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PDi and higher values in Ki, whenever the phase space exhibits slow motion. During

slow motion, the consecutive points in the phase space are located nearby and hence,

PDi is low and Ki is high. Correspondingly for epochs of fast motion in the phase

space, we obtain higher values in PDi and lower values in Ki. The four oscillations

within a cycle of oscillation manifests as four clusters in the RN, as seen in Fig. 4.4d.

Fig. 4.12: (a) Time series of x′ of the modified Izhikevich model (black curve) for a
time period of 10.11 s and a temporal step size of 0.01 s. The time series of
a sine wave (brown curve) of the same time period, amplitude and sampling
rate is also shown. The temporal variation of (b) PDi and (c) Ki are plotted.
The shaded rectangle highlights one cycle of oscillation in (a) - (c). Note that
the nodes in a RN are representative of phase space points in time.

In Fig. 4.12, we plot the variation of PDi and Ki for the time series obtained from the

modified Izhikevich (M. Iz) model and a sine wave, both of which contain periodic

oscillations with a time period of 10.11 s sampled at a temporal step size of 0.01 s.

Similarly, we observe significant temporal variations in both PDi and Ki for the slow-

fast system while that of the sine wave remains constant. Also, we find higher values

in Ki, whenever PDi is low and vice versa. There are five oscillations in PDi and Ki

within a cycle of oscillation of the prototypical slow-fast signal. This manifests as five

protrusions of low degree nodes in the RN shown in Fig. 4.5d.

For the other systems described in this chapter, we show the temporal variation of
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the distance between consecutive state points in the phase space trajectory (PDi)

and the degree of each node (equivalently time instant) in the recurrence network for

the Hodgkin-Huxley model (HH), heat release rate oscillations (HRR), and acoustic

pressure oscillations (LRP ), respectively, in Fig. 4.13.

For every cycle of oscillation in the sine wave, we know that both PDi and Ki

(Fig. 4.13c) remain invariant. However, for the slow-fast systems, we see the

simultaneous occurrence of lower values in PDi and higher values in Ki whenever the

phase space exhibits slow motion. During slow motion, the consecutive points in the

phase space are located nearby and hence, PDi is low and Ki is high. Correspondingly

for epochs of fast motion in the phase space, we obtain higher values in PDi and lower

values in Ki.

Fig. 4.13: (a) Time series of the periodic slow-fast system and temporal variation
of (b) PDi and (c) Ki are plotted for (I) Hodgkin-Huxley model (HH),
(II) heat release rate oscillations of a gas turbine-type combustor (HRR),
and (III) acoustic pressure oscillations from a laboratory-scale liquid rocket
combustor (LRP ). The shaded rectangle highlights one cycle of oscillation
in (a) - (c). Here, we observe that the PDi and Ki oscillates even within a
single period of oscillation of the slow-fast system.

We observe six clusters along with a protrusion in the corresponding RN ofHH model.
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The six clusters arise from the six cycles of small amplitude oscillations in PDi and

Ki (see Fig. 4.13Ib,c). These six cycles could reflect six pairs of slow-fast epochs in

the corresponding phase space of this signal. There exists a single large oscillation

in both PDi and Ki which gives rise to the protrusion with high degree nodes in the

corresponding RN .

Next, in the HRR system, we can clearly observe the four oscillations from the Ki

(see Fig. 4.13IIc), while it is difficult to discern this information from the PDi (see

Fig. 4.13IIb). Furthermore, these four oscillations manifest as four clusters in the

corresponding RN.

Finally, in the RN of LRP system, we observe nine protrusions ensuing from the nine

pairs of slow-fast epochs in its phase space and is reflected in the nine oscillations within

a cycle of the LRP in both PDi and Ki (see Fig. 4.13IIIb,c).

With the understanding gained from analyzing the various prototypical and

experimental systems in this chapter, we noticed that the dynamics of slow-fast systems

can be understood based on their recurrence properties. From the RNs, we observed

that some slow-fast systems exhibit protrusions, while other systems display clustering.

Each slow-fast system imparts a signature micro-pattern over the diagonal lines in their

corresponding RP. It is also interesting to note that even though both real-world systems

discussed here operate in a regime of thermoacoustic instability, both systems exhibit

different RN topology due to a difference in their underlying mechanisms that generate

such oscillations. Finally, we interpret the RN topology using the temporal variation in

the distance between consecutive points in the phase space and the degree of each node

in the RN of slow-fast systems.

4.7 CONCLUDING REMARKS

In this chapter, the recurrence properties of slow-fast systems are studied by means

of recurrence plots and recurrence networks are explored. A systematic approach

is adopted by first performing the analysis on prototypical signals before analyzing
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high-dimensional signals obtained from experiments. We find that slow-fast systems

exhibit different recurrence properties compared to periodic systems which operate on

a single timescale. We observe that unique features about the slow-fast system can

be obtained from the micro-patterns along the diagonal line in the RPs, unlike mere

straight lines observed in the RP for harmonic signals. Especially, we find that hairpin

trajectories in the phase space lead to the occurrence of line segments perpendicular

to the main diagonal line in the RP. These findings help to improve the understanding

of the various patterns evident in the RP. Further, we identify characteristic features in

the corresponding RN topologies for slow-fast systems. In addition to the closed-ring

structure of periodic signals, we also observe protrusions and clustering in the RN for

slow-fast systems. Such additional features in the RN result from the temporal variation

in the distance between consecutive points in the phase space and the degree of nodes

in the RN of slow-fast systems. These variations are absent in single timescale systems.

Understanding the slow-fast time scales and their universality in diverse systems across

natural sciences, medicine, econometrics, and engineering, would be crucial in the

future. Specifically for rocket engines, we believe that suitable quantifiers derived from

the RN can be used to benchmark simulations that predict thermoacoustic instability in

combustion chambers of rocket engines.
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CHAPTER 5

Coupled interaction between acoustic pressure and flame

intensities during the transition to thermoacoustic instability

.

During thermoacoustic instabilities characterized by transverse acoustic mode

oscillations, the large amplitude oscillations in the heat release rate may lead to

undesirable melting of components of the combustion chamber. Therefore, it is

important to understand the onset of these large amplitude heat release rate oscillations.

Despite decades of active research, a deeper understanding of the coupled interaction

between the acoustic and the heat release rate oscillations in rocket engine combustors

has been missing (Harrje and Reardon, 1972; Hardi, 2012; Sardeshmukh et al., 2019).

Moreover, past studies have focused mostly on the state of thermoacoustic instability.

Hence, the coupled interaction between the acoustic pressure and the heat release rate

oscillations in the combustors of rocket engines during the transition from stable state

to thermoacoustic instability is not completely understood.

The analysis of coupled interaction between the acoustics and the flame in transverse-

excited combustors operating under elevated pressure conditions are notoriously

difficult. First, the nonlinear interactions between acoustics, multiple jet flames, and

flow processes in rocket engine combustors introduce additional features such as steep

fronted waves (Saenger and Hudson, 1960) and rise in mean pressure (Flandro et al.,

2007). Further, due to the high-frequency acoustics typically seen in combustors of

rocket engines, the flame and the acoustic length scales are comparable. Such an

environment is termed ’acoustically non-compact’ where the acoustic perturbations

vary significantly even across a single jet flame in the combustor. These effects makes

This chapter is published in Kasthuri, P., S. A. Pawar, R. Gejji, W. E. Anderson and R. I. Sujith
(2022). Coupled interaction between acoustics and unsteady flame dynamics during the transition to
thermoacoustic instability in a multi-element rocket combustor. Combustion and Flame, 240, 112047.



it challenging to study of the coupled interaction between the acoustics and heat release

rate in the combustors prone to transverse thermoacoustic instability.

In this chapter, we adopt the framework of synchronization theory (Lakshmanan

and Senthilkumar, 2011; Pawar et al., 2017) and recurrence theory (Marwan et al.,

2007; Gotoda et al., 2014) to analyze the coupled dynamics of acoustic pressure and

CH* intensity (representative of heat release rate) oscillations during this transition

in the 2D multi-element self-excited model rocket combustor. First, we perform a

temporal analysis of the coupling between the acoustic pressure and the CH* intensity

(representative of heat release rate) oscillations during the transition to thermoacoustic

instability.

Then, we study the spatiotemporal dynamics of the jet flames near the end wall

and the center of the combustor for each dynamical state. We discuss the effect of

the transverse propagating shock wave on the flame dynamics. Then, we devise a

novel methodology to reconstruct the spatiotemporal variation of the acoustic pressure

in such ’acoustically non-compact’ environments, and extend our reconstruction

to spatiotemporally resolved CH* chemiluminescence measurements. From the

reconstructed data, we estimate the contribution of each transverse mode to the

generation of acoustic power using the spatial distribution of Rayleigh index. Finally,

using recurrence quantification analysis, we quantify the extent of determinism in the

dynamics of local CH* intensity oscillations at both the end wall and center locations

of the combustor.

5.1 OSCILLATORS OF THE THERMOACOUSTIC SYSTEM

In this chapter, we study the coupled interaction between the turbulent reacting flow

field and acoustic field during the transition to transverse thermoacoustic instability. We

define the acoustic field and the turbulent reacting field as the two oscillators and use

the framework of synchronization theory to understand the interacting between these

two subsystems.
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For the study of synchronization, the oscillators should be self-sustained and exhibit a

coupling (weak/strong) between them (Pikovsky et al., 2003). In turbulent combustors,

due to the inherent hydrodynamic fluctuations, the heat release rate and the acoustic

pressure exhibit self-sustained chaotic oscillations during stable operation of the

combustor (Pawar et al., 2017). The acoustic field in a cold turbulent flow has

been reported to exhibit self-sustained chaotic oscillations at broadband frequencies

(Godavarthi et al., 2018). In our study, the underlying flow field is highly turbulent

(Reynolds number ∼ 393000 at the injector exit), and as the oxidizer is preheated to

635 K, the jet flames inherently oscillate even during stable operation due to density-

stratification (Emerson et al., 2012) and also due to inherent turbulent fluctuations.

Therefore, in the presence of turbulent reactive flow, the acoustic field and the turbulent

reacting flow in our combustor can indeed be considered as self-sustained aperiodic

oscillators.

Note that each of these oscillators behave as a damped oscillator in the absence of

turbulent flow. However, the presence of continuous disturbances from the inherent

turbulent hydrodynamic flow makes them self-sustained oscillators. Therefore, we

can apply the framework of synchronization to study the coupled behavior between

acoustic pressure and CH* intensity (representative of heat release rate) oscillations

during the transition to thermoacoustic instability. Studying such synchronization

behaviors between different subsystems (through different variables that represent these

subsystems) of the same system is well-established in nonlinear dynamics; examples

include thermoacoustic systems (Pawar et al., 2017; Chiocchini et al., 2018; Murayama

and Gotoda, 2019; Guan et al., 2019b), biological systems (Schäfer et al., 1999),

psychology (Scherer, 2000), neuroscience (Siapas et al., 2005; Nikulin and Brismar,

2006), and network systems (Pecora and Carroll, 2015).

We study the data obtained from two test cases - E and C, as described earlier in

Chapter. 3. Since both the tests are performed for the same set of operating conditions,

we will utilize test E and test C for comparing the dynamics near the end wall and the
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center of the combustor, respectively. Due to the continuous presence of hydrodynamic

fluctuations inherent in the turbulent flow (Reynolds number ∼ 393000 at the injector

exit), both the CH* intensity and the acoustic pressure exhibit self-sustained oscillations

(Pawar et al., 2017; Godavarthi et al., 2018). Hence, we consider the acoustic pressure

and the CH* intensity as the two oscillators of the system.

5.2 TEMPORAL ANALYSIS OF THE COUPLED ACOUSTIC PRESSURE

AND CH* INTENSITY FLUCTUATIONS

In Fig. 5.1, we show the pressure (i.e., p = p̄+ p′) and the normalized CH* intensity (I)

measured at both the locations in the combustor during the transition to thermoacoustic

instability. The pressure and photomultiplier signals acquired near the end wall (PT-01

and PMT-01) and the center of the combustor (PT-02 and PMT-02) are used to capture

this dynamical transition in tests - E and C, respectively as described in Chapter. 2. To

visually compare the qualitative behavior of the two signals, we show the waveforms of

the acoustic pressure (p′) and the CH* intensity fluctuations (I ′) normalized with their

respective maximum values in the zoomed insets.

Although both the tests are performed for the same set of operating conditions,

interestingly, they exhibit different sets of dynamical states. In test E, we

observe intermittency, characterized by epochs of low amplitude aperiodic oscillations

(p′/p̄ ∼10%) and high amplitude periodic oscillations (p′/p̄ ∼90%) interspersed in

a random manner. This intermittency is succeeded by thermoacoustic instability,

characterized by large amplitude (p′/p̄ ∼100%) high frequency (∼2650 Hz) limit cycle

oscillations at the first transverse mode (1T) of the combustor. At the beginning of

test C, we observe a stable state, characterized by low amplitude aperiodic oscillations

(p′/p̄ <10%). This stable state is followed by intermittency and thermoacoustic

instability. During this transition from stable state to thermoacoustic instability in both

the tests, the presence of DC shift can be clearly discernible from significant increase

in the mean pressures.
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Fig. 5.1: Time series of the pressure (p) and the normalized CH* intensity (I)
oscillations for (a) test E and (b) test C. The zoomed insets represent the
normalized waveforms of p′ and I ′ during (I) aperiodic epoch of intermittency,
(II) periodic epoch of intermittency, and (III) thermoacoustic instability.

Next, we qualitatively analyze the coupled behavior of the p′ and I ′ during the onset

of thermoacoustic instability. At the outset, we observe that the oscillations are either

aperiodic or periodic during each dynamical state en route to thermoacoustic instability.

During thermoacoustic instability (Fig. 5.1III), we observe that both p′ and I ′ are

periodic and nearly in-phase with each other. The p′ signal exhibits a spiky wave form

where the amplitude of the signal rises sharply to a high value, then decays gradually

and stays near the minimum amplitude for a long epoch in the oscillation cycle, as

described in Chapter. 4. Such a waveform is typical of steep fronted pressure wave.

While the waveform of I ′ is also spiky and stays near the minima for a long epoch in

the oscillation cycle, the rise in its amplitude is not as rapid as that of the p′.

During intermittency, we observe alternate occurrences of bursts of periodic oscillations

in between epochs of low amplitude aperiodic oscillations. The wave steepening

effect is not as pronounced during the periodic part of intermittency when compared

to thermoacoustic instability (compare zoomed insets - II and III in Fig. 5.1). During

the periodic part of intermittency (Fig. 5.1II), the oscillations of both p′ and I ′ match in

their rhythms with nearly zero phase difference. Conversely, during epochs of aperiodic
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oscillations in the intermittency signal (Fig. 5.1I), the temporal locking of oscillations in

p′ and I ′ appears to be absent. The waveform of the oscillations in each dynamical state

of p′ and I ′ during test C is nearly akin to that seen in test E. This test exhibits the stable

state before intermittency. During the stable state, we observe sustained desynchronized

aperiodic oscillations in both p′ and I ′ signals.

5.2.1 Cross wavelet analysis of the acoustic pressure and the CH* intensity

oscillations

To understand the synchronization characteristics between p′ and I ′ signals during the

onset of thermoacoustic instability quantitatively and also to identify the locking of their

dominant modes, we perform a cross wavelet transform (XWT) (Grinsted et al., 2004)

between these signals. The XWT indicates the regions in the time-frequency space

where the two time series simultaneously exhibit high spectral powers. The complex

Morlet wavelet shown in Eq. (5.1) is used as the mother wavelet (ψ0). Here, η and

ω are dimensionless time and frequency, respectively. The Morlet wavelet, ψ0, can be

dilated and translated in time-frequency space following a continuous wavelet transform

(Grinsted et al., 2004).

ψ0(η) = π−1/4eiωoηe(−1/2)η2 ,

W (u, s) =
1√
s

∫ +∞

−∞
x(t)ψ0

(
t− u

s

)
dt.

(5.1)

Here, x(t) is the time series analyzed, whereas s and u are the scale and translation

parameters of ψ0, respectively. The XWT for the two time series, x(t) and y(t) is

obtained by Wxy = WxW
∗
y (* denotes complex conjugate). The magnitude of the

common spectral power is obtained as |Wxy|. The instantaneous relative phase between

the two time series is given by arg(Wxy). This information can be illustrated in a time-

frequency plot.
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Desynchrony between acoustic pressure and CH* intensity oscillations during

stable state

Fig. 5.2: The normalized time series of acoustic pressure (p′) and CH* intensity (I ′)
oscillations, along with the corresponding XWT plot during the stable state.
The pressure and CH* intensity oscillations measured near the center of the
combustor are used.

Both p′ and I ′ are aperiodic throughout the stable state (see Fig. 5.1I). From the XWT

plot of p′ and I ′ shown in Fig. 5.2 for a time interval of 30 ms, we observe a non-

homogeneous distribution of common spectral power along with a random alignment

of the relative phase arrows at the 1T mode or its harmonics. Therefore, the coupled

behavior between p′ and I ′ during stable state corresponds to that of desynchronization.

Evolution of synchrony between acoustic pressure and CH8 intensity oscillations

during intermittency and thermoacoustic instability

In Fig. 5.3a, we show the XWT of p′ and I ′ signals for an epoch of intermittency

comprising the transition from periodic to aperiodic oscillations. The region outside

the shaded area in the XWT is called the ’cone of influence’. In the shaded region, the
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estimates of power of cross wavelet transform between the p′ and I ′ signals cannot be

ascertained above a 95% confidence level, due to the finiteness of the data and temporal

sampling (Grinsted et al., 2004). Henceforth, we utilize the information inside the ’cone

of influence’ to understand the time-frequency behavior. When the signal is periodic,

we observe a strong amplitude content at a band of frequencies centered around 2650

Hz (1T mode) in the plot of XWT. The common spectral power of this mode decays as

soon as the oscillations in the signal become aperiodic. In the aperiodic epoch of the

intermittency signal acquired at the end wall, we observe the absence of any common

power between the p′ and I ′ oscillations.

On the other hand, during the state of thermoacoustic instability (Fig. 5.3b,c), we

observe that a common band of frequencies around 1T mode sustains their high

magnitude throughout the signal. Moreover, the presence of steepened shock wave

results in the occurrence of several harmonics of considerable amplitudes. During

thermoacoustic instability, near the end wall (see Fig. 5.3b), we observe that the

common spectral power gradually decreases from 1T to 10T modes. However, for

thermoacoustic instability, near the center of the combustor (see Fig. 5.3c), we only

observe high common spectral power for the 2T mode followed by the 1T mode.

Performing a simulation based on the same combustor, Harvazinski et al. (2019) had

reported that the pressure at the center of the chamber has a frequency that is double

the frequency observed at the end wall. The results from XWT plots in Fig. 5.3b,c are

in agreement with their study. Further, our result indicates that only the first two modes

dominate the coupled behavior of p′ and I ′ in the center of the combustor.

Additionally, the instantaneous phase difference between p′ and I ′ signals at each

frequency is represented by arrows distributed all over the plot of XWT. The alignment

of these arrows in the same direction in time, for a frequency having high common

spectral power indicates the presence of synchrony between the signals at that

frequency. Further, the orientation of arrows indicates the value of the relative phase

between these synchronized oscillations at the frequency they are locked and enables
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Fig. 5.3: The normalized time series of the acoustic pressure oscillations (p′) and the
CH* intensity oscillations (I ′) for (a) periodic to aperiodic transition observed
during intermittency, and (b) thermoacoustic instability measured near the end
wall, and (c) thermoacoustic instability near the center of the combustor. We
also show the corresponding XWT and the normalized amplitude spectrum
from FFT. PT-01 and PMT-01 are used in (a,b), while PT-02 and PMT-02
are used in (c). The orientation of the arrows in the XWT represent the
relative phase angle between p′ and I ′. A statistically sufficient time interval
of around 21 oscillation cycles is used to evaluate the XWT plots. Note that
the frequency scale used is nonlinear.

us to identify lead-lag behavior. During thermoacoustic instability (Fig. 5.3b,c), the

arrows are aligned at the same angle at the frequencies corresponding to the first few

transverse modes. Near the end wall (Fig. 5.3b), during thermoacoustic instability, the

arrows are nearly horizontal and pointing rightward for the 1T mode. This suggests the

presence of in-phase synchronization between the p′ and I ′ signals with a relative phase

difference around −6°.

Near the center of the combustor (Fig. 5.3c), during thermoacoustic instability, we

observe that the arrows are almost horizontal but point leftwards at the frequency

corresponding to 1T mode. This indicates that the p′ at the center of the combustor

and the I ′ are anti-phase synchronized with a relative phase difference of 170°. Near

the center of the combustor, we observe that the 2T mode is the most dominant followed

by the 1T mode in the spectrum of I ′ (see spectrum in Fig. 5.3c). In the corresponding

XWT plot, the arrows corresponding to the 2T mode are aligned at 45°. This indicates

that I ′ near the center of the combustor leads p′ and is driven by both the acoustic
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velocity and pressure oscillations. The type of synchronization existing between p′ and

I ′ at both the locations in the combustor during thermoacoustic instability is detected

using recurrence measures in Sec. 5.2.2.

In Fig. 5.3a, during periodic epochs of intermittency, the arrows are aligned at

the same angle for the 1T mode. However, during the aperiodic epoch of

intermittency (Fig. 5.3a), the arrows are almost randomly oriented in all directions,

indicating desynchrony between p′ and I ′ signals. Thus, both p′ and I ′ signals

are phase synchronized during thermoacoustic instability and are intermittently phase

synchronized during intermittency. A similar synchronization transition to longitudinal

thermoacoustic instability in a gas turbine type combustor was reported in Pawar et al.

(2018).

Further, the amplitude spectra of p′ and I ′ (shown on the right side of the each XWT in

Fig. 5.3b,c) during thermoacoustic instability show the presence of several harmonics

(up to 10T). However, the XWT of these signals (Fig. 5.3b,c) indicates that the spectral

power in the common frequency bands gradually diminishes beyond the first few

harmonics of the p′ and I ′ signals.

We plot the approximate mode shapes for the first four transverse acoustic pressure

modes in Fig. 5.4a. For the nth mode, its mode shape is calculated as cos(2π x
W
n)

with W being the width of the combustor. The presence of temperature and density

gradients, shock wave, reactants and product species would significantly alter the mode

shapes (Sujith et al., 1995). In spite of these deficiencies, some features of the acoustic

pressure mode shapes remain unchanged from Fig. 5.4a. The end wall region houses the

acoustic pressure anti-node for all the transverse modes. Further, the inherent flow and

geometric symmetry of the combustor will ensure transverse symmetry in temperature.

Therefore, the location of the pressure node for the first transverse mode will remain

approximately at the center of the combustor.

Using the XWT, we plot the variation of the mean of the relative phase (⟨ϕ⟩p′,I′) between

p′ and I ′ obtained near the end wall (Fig. 5.4b) and center (Fig. 5.4c) of the combustor
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Fig. 5.4: (a) The mode shapes for the first four transverse acoustic pressure modes in
the combustor. The mode shapes are derived from a cosine approximation.
The mean relative phase (⟨ϕ⟩p′,I′) between the acoustic pressure and the CH*
intensity oscillations for each transverse mode observed near the (b) end wall
and (c) center of the combustor. The standard deviation of ⟨ϕ⟩p′,I′ is captured
by the span of the horizontal error bars.

for each of the first ten transverse modes. Close to the end wall, ⟨ϕ⟩p′,I′ is close to zero

(albeit with the I ′ leading p′ slightly) for the 1T mode indicating the presence of strong

coupling. However, beyond 1T mode, we observe a gradual change in ⟨ϕ⟩p′,I′ from 0°

to beyond 90°, denoting weaker coupling. For 2T to 4T modes, we observe that the I ′

leads p′. When the angle exceeds −90° (upward oriented arrows), we notice the absence

of common power between these signals at those modes (see blue regions in Fig. 5.3b).

This suggests that the two signals are desynchronized for harmonics greater than the 4T

mode (see Fig. 5.4a).

The coupling behavior between p′ and I ′ at the center of the combustor is different from

that near the end wall, due to the presence of the pressure node at the center for the 1T

mode (which is the dominant mode near end wall). We observe strongest coupling for

the 2T mode for which ⟨ϕ⟩p′,I′ is around 45° (Fig. 5.4c). High power in the 2T mode is

attributed to the center of the combustor being a pressure antinode for the 2T mode (see

Fig. 5.4a). For other modes, ⟨ϕ⟩p′,I′ is far off from 0° and also the common spectral
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power is diminished. Therefore, we observe a weaker coupling for these modes. From

these observations, we can surmise that the higher harmonics in p′ beyond the first

few modes are solely due to the wave steepening effects (Saenger and Hudson, 1960;

Chester, 1964) and do not arise from coupling between the acoustic and the heat release

rate oscillations.

5.2.2 Recurrence analysis of acoustic pressure and CH* intensity oscillations

The temporal dynamics of a measured signal can be understood by tracking its

recurrence in a certain neighborhood in the phase space (Marwan et al., 2007). The

recurrence plot (RP) allows one to visually identify the time instants at which the

trajectory of the system visits roughly the same region in its phase space (Marwan

et al., 2007). The pattern in the RP enables us to categorize and quantify the

temporal dynamics of chaotic, quasiperiodic, intermittent, periodic, and stochastic

signals (Webber Jr and Marwan, 2015). We follow the same methodology described

in Sec. 3.1.2 to construct the recurrence matrix (Rij).

For the RPs in this chapter, we visualize values of one and zero by colored and

white points, respectively. Thus, the RP is a two-dimensional arrangement of colored

and white points that exhibits different patterns based on the underlying dynamics of

the system. We reiterate that for a periodic signal of constant amplitude, we obtain

uninterrupted equally spaced diagonal lines in the RP. For random signals, we obtain

a grainy structure made up by isolated points in the RP. The different dynamical states

during the transition to thermoacoustic instability have been distinguished for the same

subscale rocket combustor in Chapter. 3.

Following the described methodology, we construct the RP for p′ and I ′ to compare the

dynamics during the state of thermoacoustic instability observed from both the locations

in the combustor. We employ a threshold (ϵr) of 20% of the attractor size, and fix the

embedding parameters (i.e., the embedding dimension and the time delay) appropriately

for each signal. In Fig. 5.5a,b, we plot the RP for both p′ and I ′ measured near the end
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Fig. 5.5: The recurrence plots of the acoustic pressure (p′) and CH* intensity
fluctuations (I ′) during thermoacoustic instability near the (a) end wall and
(b) center of the combustor. (c, d) The probability of recurrence P (τ) is
plotted against τf1T (i.e., the cycle count) for the end wall and center locations,
respectively. The recurrence threshold is fixed as 20% of the attractor size for
each case.

wall and center of the combustor, respectively. Near the end wall, the RPs of p′ and

I ′ during the state of thermoacoustic instability are nearly identical. Both the RPs are

manifested by diagonal lines implying periodicity in the dynamics. Moreover, the RP

of p′ near the end wall features micropatterns over its diagonal lines as a result of the

interplay between slow and fast timescales in the system (as described in Chapter. 4).

Such micropatterns are not easily discernible in the RPs of p′ and I ′ measurements near

the center of the combustor. Compared to the RPs near the end wall, the RPs of p′ and

I ′ near the center of the combustor are not identical. The corresponding RPs can be

distinguished by the broken diagonal lines in the RP of I ′ which are not seen in the RP

of p′.

Next, we exploit the quantitative information on the recurrence of p′ and I ′ signals

to qualitatively assess their coupled behavior at both locations in the combustor. We

compute the probability of recurrence P (τ ) (Romano et al., 2005) which measures the

probability with which a trajectory in phase space (x⃗′(t)) revisits the same neighborhood
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after a time lag τ and is given as,

P (τ) =
1

n− (d− 1)τopt

n−(d−1)τopt∑
i=1

Θ(ϵr −
∥∥∥x⃗′i − x⃗′i+τ

∥∥∥). (5.2)

P (τ ) can be used to capture the type of synchronization existing between p′ and I ′

oscillations from their recurrent behaviors. The type of synchronization is inferred

based on the locking of the location of the peaks as well as their heights in the plots of

P (τ) of p′ and I ′ (Romano et al., 2005).

Using P (τ), we can detect the presence of phase synchronization or generalized

synchronization amongst the p′ and I ′ signals. During phase synchronization,

both the signals show a perfect locking in their instantaneous phases but their

instantaneous amplitudes are uncorrelated (Romano et al., 2005). During generalized

synchronization, both the instantaneous phases and amplitudes of the signals are

perfectly locked. Therefore, we can express the properties of both signals using a

functional relationship (i.e., I ′ can be modeled as f(p′)) (Romano et al., 2005).

In Fig. 5.5c,d, we show the plots of P (τ) calculated for p′ and I ′ as a function of the lag

non-dimensionalized by the time period of the cycle (i.e., τf1T ) at both the locations

near the end wall and the center of the combustor. Near the end wall, we observe that

the locations and the heights of the peaks of P (τ) for both p′ and I ′ coincide with each

other and attain a value close to 1 periodically for each cycle of oscillation. However,

near the center of the combustor, P (τ) of both p′ and I ′ do not have identical heights of

their peaks. Moreover, their P (τ) magnitudes gradually decay for increasing τ . Thus,

all these observations in the RPs and the plots of P (τ) indicate that the dynamics of p′

and I ′ near the end wall is in a state of generalized synchronization. However, near the

center of the combustor, we observe a state of phase synchronization between the p′ and

I ′ signals. Here, both p′ and I ′ are perfectly phase locked but exhibit a weak correlation

between their amplitudes. Thus, the state of generalized synchronization represents a

stronger synchronization than phase synchronization since the amplitudes lock to each
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other in addition to the phase locking between the two signals (Romano et al., 2005;

Pawar et al., 2017).

To summarize, we observe a transition from a state of desynchronization (during

stable state) to intermittent phase synchronization (during intermittency) to phase

synchronization (during thermoacoustic instability) in the coupled behavior between

p′ and I ′ near the center of the combustor. Due to the stronger coupling between the

p′ and I ′ near the end wall of the combustor, we observe generalized synchronization

between them. From the mean relative phase information from the XWT plots, we

inferred the individual contribution of each of the transverse modes to the coupling

between p′ and I ′ near the end wall and the center of the combustor. Near the end wall,

the mean relative phase between p′ and I ′ gradually changes from near in-phase for the

1T mode to out-of-phase for the 5T mode. However, near the center of the combustor,

we do not observe any such discernible trend in the corresponding mean relative phase.

5.3 SPATIAL ANALYSIS OF THE JET FLAMES AND THEIR COUPLED

INTERACTION WITH THE TRANSVERSE ACOUSTICS DURING THE

TRANSITION TO THERMOACOUSTIC INSTABILITY

Next, we will study the spatiotemporal behavior of the jet flames observed at the two

locations in the combustor during the stable state, intermittency, and thermoacoustic

instability. The behavior of the jet flames near the center of the combustor during the

stable state is represented by four representative instantaneous CH* chemiluminescence

snapshots in Fig. 5.6. We observe that the jet flames propagate longitudinally in the

direction of the flow. The three flames can be clearly distinguished from one another.

Only the central flame is lifted off from the injector recess, while its neighboring

flames are anchored to the injector recess. Moreover, the central flame has a shorter

jet core and burns rapidly. As a result, we observe higher intensities in the central flame

compared to its neighbors. The dynamics of the central lifted flame for low amplitude

periodic oscillations during intermittency and high amplitude periodic oscillations
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during thermoacoustic instability is discussed elaborately with the supporting schlieren

images by Gejji et al. (2020).

5.3.1 Phase-averaged flame images during periodic epochs of intermittency and

thermoacoustic instability

The flame behavior during the periodic epochs of intermittency and thermoacoustic

instability at the two locations in the combustor are studied by adopting the method

of phase averaging. In this method, only the images pertaining to the phase selected

for each cycle of oscillations are averaged over 25 cycles. We cannot apply phase

averaging during the stable state and for aperiodic epochs of intermittency since the

phase for aperiodic oscillations cannot be properly defined. Four phase-averaged CH*

chemiluminescence images during periodic parts of intermittency for the two locations

in the combustor are shown in Fig. 5.7. The four phases (A - D) indicated over the

pressure waveform in Fig. 5.7a are selected to describe the dynamic behavior of the jet

flames.

During the periodic epochs of intermittency, at both the locations in the combustor

(see Fig. 5.7c,d), we observe that all the jet flames exhibit higher intensities than that

observed during the stable state (Fig. 5.6). Each jet core remains intact throughout the

periodic oscillations observed during intermittency. As a result, the jet flames continue

Fig. 5.6: Four representative snapshots of the three jet flames at the center of the
combustor during stable state. Apart from the central flame, all other flames
are anchored to the injector recess. The three flames are represented by arrows
in the first instantaneous image (A).
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Fig. 5.7: Time series of pressure during intermittency at the (a) end wall (PT-01) and
(b) the center of the combustor (PT-02). The four phases (A - D) at which
the CH* chemiluminescence images are averaged are indicated over the time
series. The phase-averaged images during intermittency near (c) the end wall
and (d) the center of the combustor are shown. The flames visible through the
optically accessible windows are marked in the phase averaged image (at A)
for both the locations in the combustor.

to be distinguishable from each other. Compared to the near steady flames observed

during stable state (see Fig. 5.6), we observe the presence of periodic transverse

displacement of each jet flame during the periodic epochs of intermittency as the steep

fronted shock wave sweeps through it. Therefore, we observe that each jet flame

exhibits substantial asymmetric oscillations due to the asymmetric vortex shedding

from the gaps between the neighboring injector recesses (Gejji et al., 2020).

Comparing the phase-averaged images during periodic epoch of intermittency near the

end wall (Fig. 5.7c) and center (Fig. 5.7d) of the combustor, we observe that the jet

flames near the end wall exhibit higher intensities when the passage of the shock wave

coincides with the peak pressure (captured by phase at A). The jet flames near the end

wall exhibit their minimum intensity at pressure minima (captured by phase at C) during

which the shock wave is far away from the optical window. The images corresponding

to phases - B and D show intermediate flame intensities. In contrast to the behavior

at the end wall, the shock wave passes through the center of the combustor twice for

each reflection off the end wall (Harvazinski et al., 2019). Furthermore, the 2T mode is

dominant in the center of the combustor, as evidenced from the XWT plot in Fig. 5.3c.
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Fig. 5.8: Time series of pressure during thermoacoustic instability at the (a) end wall
(PT-01) and (b) the center of the combustor (PT-02). The four phases (A -
D) at which the CH* chemiluminescence images are indicated over the time
series. The phase-averaged images during thermoacoustic instability near (c)
the end wall and (d) the center of the combustor are shown. The flames visible
through the optically accessible windows are marked in the phase averaged
image (at B) for both the locations in the combustor.

As a result, the jet flames near the center of the combustor during the periodic part of

intermittency exhibit nearly the same intensities for the four phases considered. We also

observe that the central jet flame (indicated as F2 in Fig. 5.7d) continues to be lifted off

during intermittency.

In a similar manner, we present the phase-averaged images during thermoacoustic

instability at the four phases indicated over the acoustic pressure signal for both the

locations in the combustor in Fig. 5.8a,b. Here, we observe significantly higher

intensities coinciding with the local pressure maxima (phase A) at both the end wall

(Fig. 5.8c) and the center (Fig. 5.8d) of the combustor. Equivalently, the intensities

are at their lowest during the pressure minima (phase C). Due to the large transverse

oscillations during this state, we observe that the jet cores are no more intact and

the jet flames can no more be distinguished from its neighbors. As the shock wave

passes through the jet flame, it imparts a large transverse displacement and substantially

displaces the jet core, and momentarily results in a spike in the local heat release

rate. This spike can be identified from the high intensities observed in the longitudinal

location where the jet flames impinge on the end wall (phase - A in Fig. 5.8c). After
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the shock wave passes through the jet flame, there is a longer relaxation period (phases

- B to D). This longer interval allows the fuel and oxidizer to mix and the jet core to

regain its original shape. Harvazinski et al. (Harvazinski et al., 2019) performed hybrid

LES/RANS simulations based on the same combustor and operating conditions. From

the spatial distribution of methane mass fraction, they found large amounts of methane

trapped around the end wall injectors during thermoacoustic instability. The passage of

the shock wave rapidly combusts these accumulated reactants, resulting in the enhanced

burn rate.

As opposed to the flame behavior near the end wall, the continued presence of hot

combustion products at the center of the combustor sustains a higher temperature. As a

result, there is no excess reactant mixture to be burnt and the jet flames near the center

(Fig. 5.8c) are less intense compared to those near the end wall. Moreover, during

thermoacoustic instability, the jet flames which are compact near the injector spread out

at the downstream locations. Eventually, the propellants auto-ignite leading to higher

heat release rate, well downstream of the injector (Gejji et al., 2020).

Thus, during the transition from the stable state to thermoacoustic instability via

intermittency, the jet flames exhibit a transition from low intensities to high intensities.

This transition is accompanied by a change from a nearly steady longitudinally

propagating jet flame during the stable state to a highly unsteady jet flame with

significant transverse motion during thermoacoustic instability. The jet flames which

are distinct during the periodic part of intermittency exhibit large transverse oscillations

during thermoacoustic instability. This results in merging of neighboring jet flames

rendering each jet flame indistinguishable from its neighbors. We also established that

the jet flames near the end wall exhibit high intensities during the periodic epochs of

intermittency and thermoacoustic instability compared to that near the center of the

combustor. This difference in the flame behavior across the combustor is attributed

to the combination of the end wall housing the pressure antinode and the enhanced

combustion from the accumulated unburnt reactants near the end wall.
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Fig. 5.9: Flowchart of spatiotemporal pressure reconstruction based on spatial (only
transverse direction) and temporal modal decomposition. The optically
accessible windows at the center and end wall of the combustor are shaded
for reference. The location of pressure measurements at both these locations
are shown using blue circles. Functions fdom andAdom computes the dominant
frequency and its corresponding amplitude, respectively.

5.4 ACOUSTIC POWER SOURCES AND SINKS USING LOCAL RAYLEIGH

INDEX

Thermoacoustic driving and damping in the combustor can be better understood in

terms of acoustic power sources and sinks. The local Rayleigh index (RI) is a

measure which quantifies the local thermoacoustic driving/damping over a spatial

domain (Culick et al., 2012). Since our combustor is receptive to several transverse

acoustic modes, we compute the RI for each transverse mode. We define the RInT for

each mode as,

RInT =
1

TP

∫ TP

0

p′nT (x⃗, t)I
′
nT (x⃗, t)dt

pnT (x⃗, t)InT (x⃗, t)
(5.3)

Here, TP is the time period of acoustic pressure oscillation, nT is the nth transverse

mode and x⃗ refers to the location in the two dimensional space of the combustor. The

mean of a variable is denoted by overline.
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The requirement of an unambiguous time period allows us to compute RInT only

during the state of thermoacoustic instability. The local Rayleigh index will allow us to

estimate the acoustic driving from each transverse mode in the combustor. However, we

need the spatiotemporal pressure and heat release rate variation for each mode. Since

the pressure is measured only at specific locations at the center and right side end wall

of the combustor (see Fig. 2.1a), we extract the pressure variation over time and the

transverse direction using a spatial and temporal modal decomposition, as depicted in

the flowchart shown in Fig. 5.9.

The local CH* intensity oscillations (representative of local heat release rate

oscillations) are decomposed into the individual modes by performing FFT of the CH*

chemiluminescence images at each spatial location (i.e., at each pixel). Then, the

Rayleigh index for each mode (RInT ) is computed over a time interval of 25 cycles of

oscillations during thermoacoustic instability. The spatial distribution of RInT at both

the locations considered are presented in Fig. 5.10. Only the first five acoustic modes

are selected since only these modes exhibit significant coupling behavior (as confirmed

by the XWT plots in Fig. 5.3).

Near the end wall (Fig. 5.10a), we do not observe any significant contribution to

acoustic driving beyond the first two modes. We do not observe sufficiently strong

acoustic power sources (i.e., RI ∼ 0) corresponding to the higher harmonics since

these modes are largely out of phase with I ′ as seen in Fig. 5.4b,c. For the 1T and 2T

modes, almost the entire window has a uniform distribution of acoustic power sources.

Moreover, the distribution of RI1T indicates that the 1T mode provides the highest

contribution to acoustic power. Earlier, from Fig. 5.4b, we had seen that only the first

two modes have ⟨ϕ⟩p′,I′ close to 0°.

From Fig. 5.10b, we see that the region near the center derives most of its acoustic

power from the 2T mode. We had established that ⟨ϕ⟩p′,I′ at the center of the combustor

is closest to 0° only for the 2T mode (Fig. 5.4d). In fact, the 1T mode actually houses

strong acoustic power sinks that counter the acoustic power contribution from the other
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Fig. 5.10: The spatial distribution of Rayleigh index (RI) is plotted for the first five
transverse acoustic modes for near (a) end wall and (b) the center of the
combustor during thermoacoustic instability.

harmonics. The damping effect of 1T mode at the center is supported by the anti-phase

coupling between p′ and I ′ (see Fig. 5.4d). It is interesting to note that the regions

occupied by the jet flames offset from the central jet flame in this window has the

strongest acoustic sinks (see blue regions in the distribution corresponding to 1T mode

in Fig. 5.10b). The cumulative effect of the contribution of acoustic power sources/sinks

from the 1T to 4T acoustic modes is reflected in the weak coupling near the center of the

combustor. For thermoacoustic oscillations exhibiting numerous harmonics, we believe

this procedure would be useful to quantify the acoustic power sources/sinks from each

acoustic mode.

5.5 RECURRENCE QUANTIFICATION ANALYSIS OF LOCAL CH*

INTENSITY OSCILLATIONS

Next, we perform a recurrence analysis on the local CH* intensity oscillations observed

at both spatial locations of the combustor. Such an analysis would reveal temporal

features about the CH* intensity oscillations, and enable a comparison of the flame

dynamics at the two spatial locations. Towards this purpose, we use determinism
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Fig. 5.11: The spatial distributions of DET for the local CH* intensity oscillations
measured near the (a) end wall and (b) center of the combustor are plotted
for stable state, intermittency, and thermoacoustic instability. A recurrence
threshold of 20% of the attractor size is used to estimate the recurrence
measures. Note that stable state is not observed near the end wall of the
combustor.

(DET ) which quantifies the predictability of CH* intensity oscillation acquired at

a given spatial location. We compute DET following Eq. 3.4 in Chapter. 3. A

purely uncorrelated stochastic signal would have DET extremely close to 0, while a

completely deterministic (correlated) signal would have DET = 1. A high value of

DET approaching 1 is indicative of a well-correlated dynamics which can be found in

either perfectly periodic and quasiperiodic systems (Zou et al., 2010). All other signals

exhibit DET values between 0 and 1. Hence, DET can be used to distinguish the

stochastic or deterministic nature of the signal (Marwan et al., 2007).

In Fig. 5.11, we show the spatial distribution of DET for the different dynamical states

observed in the combustor. Here, we evaluate DET considering the time series of CH*

intensity oscillations obtained from each pixel within the image. From Fig. 5.11, we

observe that the overall spatial distribution of high values of DET increases as the

dynamics evolves from the stable state to thermoacoustic instability. During the stable
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state, we observe lowDET for the spatial locations occupied by the jet cores and higher

DET values at the flame edges. This high value of DET arises from the correlated

nature of the vortex shedding dynamics along the flame surface. For the central lifted

flame (Fig. 5.11b), we observe that the region between the recess and the flame tip has

a very high DET , indicating the presence of deterministic fluctuations in the flame

anchoring region. Such deterministic behavior in the local CH* intensity oscillations

in the central lifted flame is not easily apparent from the raw CH* chemiluminescence

images. During intermittency, with the advent of transverse oscillations, the jet flames

get displaced laterally. Correspondingly, we observe patches of high values of DET

spread over the window. The locations occupied by the flame just after the entry to

the combustor exhibits high DET at both the center and the end wall. Further, we

obtain high DET values at locations exhibiting large CH* intensity oscillations near

the end wall (see Fig. 5.7c). As the dynamics transition to thermoacoustic instability,

the jet flames are no more intact and spread over the entire window (see Fig. 5.8c,d).

Consequently, almost the entire region near the end wall exhibits DET close to 1,

indicating widespread periodicity in the local CH* intensity oscillations. Compared

to the end wall (Fig. 5.11a), the DET near the center (Fig. 5.11b) varies from 0.5 to

1. This indicates that the CH* intensity oscillations and, in turn, the heat release rate

oscillations during thermoacoustic instability are more deterministic near the end wall

than that near the center of the combustor.

Thus, the spatial distribution of DET is able to capture the deterministic features

present in the dynamics of local heat release rate oscillations during each dynamical

state. Regions exhibiting high/low DET during thermoacoustic instability at the end

wall of the combustor coincide with those of high/low RI1T , respectively (see the

corresponding distribution in Fig. 5.10a). However, this qualitative similarity in the

distributions of DET and RI2T is not seen at the center of the combustor.

From this spatial analysis, we have shown that the dynamics of local CH* intensity

oscillations change drastically during the transition from the stable state to intermittency
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to thermoacoustic instability. Specifically during thermoacoustic instability, the

oscillating jet flames in conjunction with the shock wave alters the distribution

of the local CH* intensity oscillations in a significantly different manner at the

end wall compared to the center of the combustor. Furthermore, we showed that

contribution of local CH* intensity fluctuations in driving unstable acoustic modes

during thermoacoustic instability is significantly dependent on the location within the

combustor.

5.6 CONCLUDING REMARKS

In this chapter, we analyzed the coupled interaction between the acoustic pressure

oscillations (p′) and the CH* intensity oscillations (I ′) in the presence of self-excited

transverse thermoacoustic oscillations developed in a multi-element rocket combustor.

Specifically, we compared the coupled behavior of these oscillations in the center

and the end wall regions of the combustor. During the transition to thermoacoustic

instability, we observe a synchronization transition in the coupled behavior of p′ and

I ′ oscillations. These oscillations which are desynchronized during stable state and

aperiodic epochs of intermittency become phase synchronized during periodic epochs

of intermittency. During the state of thermoacoustic instability, we also find that p′

and I ′ exhibit phase synchronization at the center of the combustor and generalized

synchronization near the end wall of the combustor. From the increasing trend of the

relative mean phase between the modes of p′ and I ′, we discern that only the first

few modes contribute to the coupling between the p′ and I ′ oscillations. The higher

harmonics seen in the spectrum of p′ arise from the nonlinear wave steepening effect

and do not contribute to the coupling between p′ and I ′.

Performing a spatial analysis, we found that the local CH* intensity oscillations near the

end wall are higher compared to that near the center of the combustor. This difference

in the flame behavior is ascribed to a combination of the presence of pressure antinode

and spike in heat release rate due to rapid reaction resulting from wall impingement of
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premixed pockets of reactants. From the spatial distribution of the Rayleigh index, the

contribution of each transverse mode to the generation of acoustic driving is computed

during thermoacoustic instability. The superior acoustic driving from the 1T mode near

the end wall and the 2T mode near the center of the combustor is revealed. Using

recurrence quantification analysis of the local CH* intensity oscillations, we quantified

the transition from stochasticity to widespread determinism in the local CH* intensity

oscillations during the onset of thermoacoustic instability. We also found that the

local CH* intensity oscillations near the end wall are more deterministic (correlated)

compared to the center of the combustor during thermoacoustic instability.
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CHAPTER 6

Quantifying coherence in the flame intensity oscillations using

correlation networks

Understanding the flame dynamics in conjunction with the acoustic pressure oscillations

forms the fundamental part of understanding the driving processes in rocket combustors.

(Harrje and Reardon, 1972; Anderson and Yang, 1995; Urbano et al., 2017; Hardi

et al., 2014a). The jet flame dynamics is controlled by the local acoustic perturbations,

turbulent flow, non-premixed combustion, hydrodynamic instabilities, and the geometry

of the combustor. Since coherent flame oscillations can generate and sustain

thermoacoustic instability (Lieuwen, 2012; Karmarkar et al., 2021), it is of utmost

importance to characterize the coherence in the flame oscillations. Therefore, the heat

release rate oscillations can be separated into two components: coherent and incoherent

fluctuations (Lieuwen, 2012).

A jet flame usually exhibits intrinsic incoherent oscillations in response to the turbulent

flow fluctuations (Lieuwen, 2012). Based on the flame density ratio, the jet flame may

exhibit coherent oscillations (Emerson et al., 2012). Further, when the jet flames are

sensitive to the local transverse acoustic pressure and acoustic velocity fluctuations, they

are laterally displaced and oscillate vigorously (Oschwald and Knapp, 2009; Sliphorst

et al., 2011; Morgan et al., 2015). In a rocket combustor susceptible to transverse

thermoacoustic instability, the neighboring jet flames might merge and even exhibit

strong collective interaction (Rey et al., 2004). Such flame-flame interactions have been

proposed to be a possible driving mechanism for thermoacoustic instability (Richecoeur

et al., 2006; Armbruster et al., 2021). Furthermore, the presence of atomization, vortex

shedding, shear layers, coherent structures, and shock waves in the flow field imparts

heterogeneity to the local flame dynamics. Therefore, the jet flame dynamics in a

This chapter is published in Kasthuri, P., A. Krishnan, R. Gejji, W. E. Anderson, N. Marwan, J.
Kurths, and R. I. Sujith (2022). Investigation into the coherence of flame intensity oscillations in a model
multi-element rocket combustor using complex networks. Physics of Fluids, 34(3), 034107.



rocket combustor is heavily influenced by the nonlinear interactions between acoustic,

combustion and fluid mechanic processes.

Inspired by the advances in thermoacoustics using complex network theory (see

Sec.1.6.2), in this chapter, we construct positively and negatively correlated spatial

networks to identify different regions of coherent and incoherent heat release rate

oscillations in the turbulent reactive flow field of the 2D subscale rocket combustor

during the onset of thermoacoustic instability. First, we describe the methodology

behind network construction in Sec. 6.1. Then, using the network measures described

in Sec. 6.2, we quantify the extent of coherence and incoherence in the flame intensity

oscillations at different regions in the combustor in the remainder of the chapter.

6.1 METHODOLOGY OF CORRELATED SPATIAL NETWORK

CONSTRUCTION

In the network, each spatial location (i.e., each pixel) in the region of interest is

considered as a node. The interactions between any two nodes is captured by the links

connecting them. To quantify the interaction between two such nodes, various measures

such as Pearson correlation, average mutual information, and event synchronization

between two time series have been used to construct relevant spatial networks (Zou

et al., 2018).

Here, we construct weighted networks based on the Pearson correlation (Eq. (6.1))

between the time series of intensity fluctuations obtained from the CH*

chemiluminescence images acquired near the end wall of the combustor. Pearson

correlation (Rp) is a linear measure computed between two time series. A positive

Rp suggests that the two time series increase and decrease together, whereas a negative

Rp indicates that one time series increases while the other decreases and vice versa. The

case of Rp = 0 means that there is no linear relationship between the two time series

over the time interval considered. In Eq. (6.1), xti and xtj are the elements of the two

time series at their corresponding grid points whose arithmetic mean is given by x̄i and
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x̄j , respectively.

Rp(i, j) =

∑n
t=1 (x

t
i − x̄i)

(
xtj − x̄j

)√∑n
t=1 (x

t
i − x̄i)

2
√∑t

i=1

(
xtj − x̄j

)2 . (6.1)

Here, n is the total number of time instants used to evaluate the time-averaged

correlation (Rp). We have a total ofN = 9828 (126 px × 78 px) nodes with i, j ∈ [0, N ].

We compute the pairwise correlation values (Rp) for all the nodes and encapsulate this

information in a correlation matrix of size N ×N . Then, we construct positively (Rp >

0) and negatively (Rp < 0) correlated weighted networks from the correlation matrix

made up of Rp for all pairwise combinations of the available spatial locations. For the

positively correlated network, we set all negative correlation coefficients to zero. While

analyzing the negatively correlated network, we set all positive correlation coefficients

to zero and then, take the absolute value of the correlation matrix to obtain the negatively

correlated network. Then, we can proceed to set the appropriate positive threshold (ϵ)

to disregard weaker correlations and build the relevant adjacency matrix. The rationale

behind the selection of ϵ followed in this chapter is described in Sec. 6.4.

The adjacency matrix, Aij (N × N ) encodes the connections between all the grid

points in the network. Two nodes, i and j, are connected and Rp(i, j) is assigned as

the corresponding weight (Wij) of their link, only when Rp(i, j) exceeds a predefined

threshold, ϵ. The positively (A+
ij) and negatively (A−

ij) correlated adjacency matrices are

generated following Eq. (6.2). We do not consider self-connections rendering Aii = 0.

In this manner, we construct a spatial network for each of the dynamical states observed

in the combustor.
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A+
ij =


Wij = Rp(i, j), if Rp(i, j) ≥ ϵ

Wij = 0, otherwise.
(6.2.1)

A−
ij =


Wij = −Rp(i, j), if −Rp(i, j) ≥ ϵ

Wij = 0, otherwise.
(6.2.2)

6.2 NETWORK MEASURES TO QUANTIFY THE SPATIAL DYNAMICS

FOR EACH DYNAMICAL STATE

We use network measures such as degree, node strength, and average nearest neighbors’

degree, to compare the topology of networks for each dynamical state. The degree, ki

(Eq. (6.3)), quantifies the number of grid points (nodes) connected to a particular grid

point i in the network (Barabási et al., 2016).

ki = nnz(Aij). (6.3)

Here, the nnz function counts the number of non-zero elements present in each row in

the adjacency matrix. The degree distribution, P (k) versus k, represents the probability

that a node in a network has degree k. If nk represents the number of nodes having

degree k, P (k) is defined as P (k) = nk/N .

The node strength si for a node i, captures the sum of the weights of all its links.

si =
∑
j∈N

Wij. (6.4)

Both ki and si quantify the relative importance of node i in the network. However, s

distinguishes nodes based on the weight of the links, rather than on the number of links.

The behavior of a node can be significantly influenced by its spatial location. The

interactions amongst neighboring nodes result in degree correlations in the network. To
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probe the presence of degree correlations, it is important to analyze the neighbors of a

node. We quantify the effect of neighboring nodes by the average degree of the nearest

neighbors (Barrat et al., 2005) of a node i, which is evaluated as,

knn,i =
1

ki

∑
j∈ν(i)

kj. (6.5)

Here, νi covers only the nearest neighbors (nn) of the node i. Then, the degree

correlation function (knn(k)) is evaluated from knn as,

knn(k) =
∑
k′

k′P (k′|k), (6.6)

where P (k′|k) is the conditional probability that a k-degree node is connected to a k′-

degree node (Barabási et al., 2016). Thus, knn(k) is the average degree of the neighbors

of all k-degree nodes.

The variation of knn(k) with k unearths correlations between the neighbors (Newman,

2002). An increasing trend of knn(k) is termed as assortative and suggests that high

degree nodes tend to be surrounded by other high degree nodes. In simple words, it

quantifies the ‘rich gets richer’ effect (Barabási et al., 2016). In contrast, a decreasing

trend is termed as disassortative (Barabási et al., 2016). Networks exhibiting no

clear distinguishable trend in the distribution of knn(k) are called neutral networks

(Barabási et al., 2016). Using the aforementioned measures, we characterize the

spatial weighted positively and negatively correlated networks during the onset of

thermoacoustic instability.

Since the acoustic pressure and heat release rate oscillations are the highest, we are

interested in the flame dynamics near the wall. As a result, we analyze the CH* intensity

oscillations emanating from the two turbulent jet flames located towards one end of the

combustor through an optically accessible window.
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6.3 JET FLAME RESPONSE TO TRANSVERSE ACOUSTIC

OSCILLATIONS ALONG THE LONGITUDINAL DIRECTION

It is well-known from past studies that a flame in the presence of transverse

thermoacoustic oscillations respond differently than that observed for the longitudinal

oscillations (O’Connor et al., 2015). In this combustor, the turbulent jet flames

are largely in the longitudinal direction and are susceptible to transverse velocity

perturbations whenever an acoustic wave passes through them. Hence, it is interesting

to examine the response of the flames to self-excited transverse oscillations in the

longitudinal direction.

Fig. 6.1: The selected portion of the jet flame (i.e., half of the width of the jet flame)
overlaid on the representative CH* chemiluminescence image obtained from
the end wall window.

Across the width of the jet flame, a varicose or sinuous mode of the jet flame

would exhibit in-phase or out-of-phase oscillations, respectively, in the flame intensity

fluctuations obtained from both halves of the jet flame. We found that each jet flame

exhibits sinuous oscillations. When we select the entire width of the jet flame for the

local flame intensity calculations, we were not able to make this distinction between the

oscillatory motion of the flame due to superposition effects along both halves of the jet

flame. Hence, we selected just a half of the jet flame (see Fig. 6.1) to detect the type

of vortex shedding (sinuous or varicose) exhibited by the flame front. The time series

of the local flame intensity fluctuations is obtained by summing up the flame intensities

at each pixel across half-width of the jet flame for the right half of left jet flame (AF1r)

and right half of right jet flame (AF2r) as shown in Fig. 6.1.
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Fig. 6.2: The flame response along the longitudinal direction characterized by the
amplitude of dominant mode of the oscillations of pixel intensities summed
across the transverse direction for the half width of the left flame (AF1r) and
right flame (AF2r). The crests and troughs in the flame response are indicated
with C and T respectively.

In Fig. 6.2, we plot the variation of the amplitude of the dominant mode of the local

flame intensity oscillations obtained from the half-width of the flame in the longitudinal

direction (see Fig. 6.1). From Fig. 6.2, we observe that the spectral amplitude of the

dominant mode through FFT of such local flame intensity fluctuations shows oscillatory

response with the presence of multiple crests (C) and troughs (T) along the flame length.

Such an oscillatory response of the flame is a combined result of the globally unstable

nature of the preheated reacting flow-field (Suresha et al., 2016) in the presence of

transverse acoustic field in the combustor. Near the injector, the flame response is

controlled by flame anchoring while at the downstream locations, the flame response

is largely controlled by the dissipation of vortical disturbances and other secondary

flows along the boundary of the flame surfaces (Shanbhogue et al., 2009). Thus, each

flame exhibits varying dominant amplitudes along its length.

We notice a similar response for the AF1r and AF2r jet flames with two crests. The

first crest in the flame responses occurs around 14 mm downstream of the injector

head. In addition to the flame anchoring effects, the flame response at this location

is supplemented from the strong interactions from the transverse acoustic wave and the

neighboring sides of the flames through merging effects, and the resulting impingement

with the wall. The flame which is compact near the injector spreads out at the
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downstream locations. This leads to enhanced mixing and subsequently higher flame

intensities. Conversely, the second crest around 32 mm downstream of the injector is

a consequence of the secondary flows caused by vortical dissipation along the flame

surfaces leading to better mixing and autoignition of propellants (Blacker, 2019).

Downstream of the second crest, boundary effects of the converging nozzle section

dominate (Gejji et al., 2019). Thus, the response of the flame to transverse acoustic

perturbations is non-uniform along the longitudinal direction of the combustor.

Next, we will evaluate the correlation between all the node pairs and build suitable

weighted networks to study the coherence in the flame intensity oscillations.

6.4 COHERENCE IN THE FLAME INTENSITY OSCILLATIONS

The extent of coherence (or incoherence) present in the flame intensity oscillations is

quantified by the Pearson correlation (see Eq. (6.1)). It is necessary to know the range of

correlation values computed between the pairwise local intensity oscillations (i.e., node

pairs) before network construction. With this aim, the empirical probability distribution

of the correlation values, P (Rp), observed for each dynamical state is presented in

Fig. 6.3. During both the dynamical states, the range of values spanning positive

correlation is wider than that of negative correlation. This observation suggests that

most of the node pairs are positively correlated in the dynamics of flame intensity

oscillations. The magnitude of the mean correlation increases from 0.25 during

intermittency to 0.46 during thermoacoustic instability.

The distribution of the correlation values changes its form from a unimodal distribution

(with peak Rp at 0.18) during intermittency to a bimodal distribution during

thermoacoustic instability. We obtain a bimodal distribution (with two Rp peaks at

0.38 and 0.68) during thermoacoustic instability since the jet flames responds both to

the incident and reflected shock wave for each cycle.

Since the selection of a suitable correlation threshold is non-trivial, we compute the

positively and negatively correlated networks for different correlation thresholds (ϵ) to
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Fig. 6.3: Empirical probability distribution of correlation values observed during
intermittency (INT) and thermoacoustic instability (TAI). The mean of
the distribution increases during the transition to thermoacoustic instability
indicative of the emergence of more coherent flame intensity oscillations.

understand the varying levels of coherence in the flame intensity oscillations.

Selecting ϵ = 0 would allow us to examine either the effect of all positive or

negative correlations for the positively or negatively correlated networks, respectively.

Successive increments in ϵ would remove the weak correlations and reveal the effect of

strong correlations in the dynamics of flame intensity oscillations in the combustor.

Next, we study the effect of short-range and long-range links on the extent of positive

and negative correlations. In Fig. 6.4, we show all possible link weights (Wij) for each

Euclidean distance of the link (Dij) during each dynamical state for the positively and

negatively correlated networks. This plot reveals all the possible Wij for a given Dij .

Hence, Wij is multi-valued for a given Dij . At this point, we reiterate that there are no

self-connections and therefore, for all Dij = 0, Wij = 0.

At the outset, we observe that the distributions of Wij are similar during both

intermittency and thermoacoustic instability. From the plots for the positively correlated

network (Fig. 6.4a,b), we observe that the highest Wij belong to the links connecting

the nearest neighbors (i.e., the smallest Dij). The presence of high Wij at lower Dij

indicates strong local interactions resulting in higher correlation amongst nodes over a

neighborhood. Interestingly, during thermoacoustic instability, we observe high values

of Wij that are greater than 0.8, even at larger Dij . This observation suggests the

presence of long-range widespread interactions amongst different local regions near
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Fig. 6.4: Link weight (Wij) versus the Euclidean link distance (Dij) as obtained
for the positively correlated network during (a) intermittency (INT), (b)
thermoacoustic instability (TAI), and the negatively correlated network during
(c) intermittency, and (d) thermoacoustic instability. Positively correlated
networks have strong long-range correlations which are absent in negatively
correlated networks.

the end wall of the combustor.

In a similar manner, all possible Wij for each Dij for the negatively correlated network

corresponding to each dynamical state are plotted in Fig. 6.4c,d. Here, across both the

dynamical states, we observe that there are no connections to the nearest neighbors.

Possibly, the presence of convection in the flow induces only positive correlations

within the local neighborhood of a node. Maximum Wij is observed not in the

local neighborhood of the nodes but for links having intermediate Dij values. The

absence of negative correlation in the immediate neighborhood of a node suggests that

convection induces only positive correlations. This reveals a fundamental difference in

the connectivity of the positively and negatively correlated spatial networks. Hereon,

we will discuss the distribution of network measures for each dynamical state observed

in the combustor.
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6.4.1 Positively correlated networks

We begin by analyzing the positively correlated networks of the flame intensity

oscillations near the end wall of the combustor during the dynamical states of

intermittency and thermoacoustic instability. We show the spatial distributions of

degree (k) and node strength (s) for different thresholds in Fig. 6.5.

For ϵ = 0, we observe that almost all nodes exhibit high k for both intermittency and

thermoacoustic instability due to the ubiquitous presence of positive correlations across

the window. Hence, both intermittency and thermoacoustic instability display a similar

k distribution for ϵ = 0. On increasing ϵ to 0.3, weaker correlations are cut-off from

the network, revealing regions with stronger interactions. From the k distribution for

intermittency, we observe a distinct pattern in the location of nodes with high k. This

pattern shows two distinct clusters (found at y = 10 - 19 mm and y = 20 - 34 mm)

which exhibit large intensity oscillations during intermittency. These two longitudinal

locations correspond to the crests formed by the asymmetrically oscillating jet flames,

where heightened flame responses to the acoustic perturbations are recorded.

During thermoacoustic instability, the nodes over the jet flame closest to the end wall

along with the aforementioned two clusters exhibit high k. Due to the even larger

transverse displacement of the jet flames imparted by the high amplitude shock wave

during thermoacoustic instability, the rightmost jet flame impinges with the end wall,

resulting in a spike in the local flame intensity. Thus, the nodes lying over the

entire jet flame closest to the end wall become highly correlated and possess high

k during thermoacoustic instability. For ϵ beyond 0, high k is observed only during

thermoacoustic instability. This difference in k distributions suggest that the majority

of the nodes are weakly and strongly coherent during intermittency and thermoacoustic

instability, respectively.

The corresponding s distributions show striking differences between intermittency and

thermoacoustic instability right from ϵ = 0. We observe maximum s only during

thermoacoustic instability. Furthermore, the pattern of s is nearly the same as the
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Fig. 6.5: The spatial distribution of degree (k) and node strength (s) for the positively
correlated network during the dynamical states of intermittency (INT) and
thermoacoustic instability (TAI) for various correlation thresholds. The
patterns in the distributions of k and s across different ϵ reveal the locations
exhibiting varying levels of coherent oscillations. Beyond ϵ = 0.5, no patterns
are visible from the spatial distributions of k and s during intermittency.

corresponding phase averaged image of CH* chemiluminescence observed at phase

A (see Fig. 5.7c in Chapter. 5). Compared to the distribution of k for ϵ = 0 which seems

137



to capture all the locations covered by the jet flames, the distribution of s captures

only the locations housing the highest flame intensity oscillations near the end wall.

For successive increments in ϵ, the spatial locations responsible for the highest flame

intensity oscillations are revealed. These spatial locations also happen to exhibit the

highest flame intensity oscillations.

In order to examine the size and strength of coherent clusters in the positively correlated

networks, we visualize the adjacency matrices.

Visualization of adjacency matrix

Fig. 6.6: Visualization of the adjacency matrix for the positively correlated networks
during intermittency (INT) and thermoacoustic instability (TAI) for the
different thresholds considered. Large weights amongst neighboring nodes
are indicative of the presence of clusters.

We visualize the corresponding adjacency matrices (of sizeN ×N = 9828× 9828) for

the positively correlated networks during intermittency and thermoacoustic instability

in Fig. 6.6. Throughout all the adjacency matrices, we can observe the strong

linkages amongst the neighboring nodes identified by the spots carrying high weights.

The weights of these spots increase during the transition from intermittency to

thermoacoustic instability. The size and color of these characteristic spots depict the

extent of coherence in the clusters identified in the spatial distributions in Fig. 6.5.
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Partial degree analysis

Fig. 6.7: Spatial distribution of the partial degree (kpartial) evaluated for the connections
originating from the nodes located inside the (a) box 1 and (b) box 2 for the
positively correlated networks during intermittency (INT) and thermoacoustic
instability (TAI) for the different thresholds considered. Boxes 1 and 2 are
chosen to be representative of an incoherent and coherent region in the flow
field, respectively.

In order to demonstrate the enhanced connectivity of nodes belonging to a coherent

cluster, we repeat the network analysis for small localized regions in the flow-field.

Only the connections from the localized region (boxes 1 and 2) are considered. The

boxes 1 and 2 are chosen to be representative of an incoherent and coherent region

respectively. The size of the box is chosen to approximately span the width of one of

the jet flames in the window. Then, we evaluated the partial degree, i.e., the number
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links connected to the selected region housing a small fraction of nodes in the entire

network.

In Fig. 6.7, we show the obtained partial degree distribution (kpartial) for the connections

emerging from two boxes (box 1 and 2) from the positively correlated networks

constructed during intermittency and thermoacoustic instability. For ϵ =0, all the

distributions of kpartial are nearly similar. However, upon increasing the ϵ to 0.3 and

above, we observe that only the distributions of kpartial associated with box 2 show large

number of connections. This analysis is further proof of the box 2 region belonging to

a coherent cluster whereas box 1 belongs to an incoherent region. In summary, the

two boxes chosen demonstrate the presence (or lack of) strong clustering behavior

and widespread connectivity due to high (or low) coherence in the flame intensity

oscillations.

6.4.2 Negatively correlated networks

Now, we study the effect of negative correlations found in the flame intensity

oscillations during intermittency and thermoacoustic instability. Negatively correlated

networks are constructed following the methodology explained in Sec. 6.1. The

distribution of the network measures in the negatively correlated networks enables us to

quantify the extent of negative correlations in the flame intensity oscillations. In turn,

the regions exhibiting negative correlations might indicate local regions which serve as

acoustic power sinks, inhibiting the growth of thermoacoustic oscillations.

As seen in Fig. 6.3, the range of negative correlations are comparatively lower than the

range of positive correlations. As a result, we show the distribution of network measures

only for ϵ = 0 in Fig. 6.8. For both intermittency and thermoacoustic instability, we

observe small islands filled by nodes with high k. These small islands are surrounded by

nodes with low k. For both intermittency and thermoacoustic instability, we discern that

the distributions of k and s are similar, even using the lowest ϵ = 0. Furthermore, both

network measures only change slightly from intermittency to thermoacoustic instability.
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Fig. 6.8: The spatial distribution of degree (k) and node strength (s) for the
negatively correlated network during the different dynamical states for the
various correlation thresholds investigated. The sparse presence of negative
correlations spread over the spatial domain during different dynamical states
is captured by the corresponding distributions of k and s.

The distributions for the negatively correlated networks perfectly complement their

corresponding distributions from the positively correlated networks. By this, we mean

that nodes having low k (or s) in the positively correlated network has a high k (or s)

and vice versa.

The variation of s is largely similar to that of k. This indicates that the locations

housing anti-correlated flame intensity oscillations interact uniformly across the entire

region. Hence, we conjecture that the uniform nature of these incoherent flame intensity

oscillations implies that the oscillations are damped uniformly at these locations,

whereas coherent flame intensity oscillations are driven at specific spatial locations

(clusters).

All these findings suggest that the spatiotemporal dynamics of the flame intensity

oscillations significantly change from intermittency to thermoacoustic instability.
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Physically, the end wall of the combustor houses the transverse acoustic pressure

anti-node. The strong thermoacoustic coupling near the end wall results in higher

flame intensities. As a result, the driving of the 1T mode in the end wall region is

higher, leading to widespread coherent flame intensity oscillations during the state of

thermoacoustic instability.

Identifying the presence of clusters of coherent flame intensity oscillations does not

provide information on the source and pathways underlining the mechanisms sustaining

thermoacoustic instability. However, enhanced information on the size and structure

of such coherent flame intensity oscillations would enable us to appropriately design

control solutions to disrupt the size, structure, and strong coherence in the flame

intensity oscillations.

6.5 DEGREE CORRELATIONS AND ASSORTATIVE MIXING IN

CORRELATED FLAME INTENSITY NETWORKS

Next, we plot the degree distribution (P (k) versus k) for all the positively and negatively

correlated networks in Fig. 6.9. At the outset, we notice that P (k) of the positively

correlated networks constructed by setting an ϵ = 0 for all dynamical states (Fig. 6.9a)

exhibits an increasing trend with k. This implies that there are a large number of spatial

locations in the end wall region which are highly connected amongst themselves during

both intermittency and thermoacoustic instability.

For ϵ > 0 (Fig. 6.9b-d), we do not see any monotonic behavior in the degree distribution

of the positively correlated networks for any dynamical state. We observe that the

probability of finding a node having low to intermediate value of k is similar for

ϵ = 0.3 and 0.5. However, the probability of obtaining a high k node increases

for thermoacoustic instability due to the widespread coherence in the flame intensity

oscillations. However, for the highest ϵ of 0.7, this probability decreases since the

fraction of highly correlated node pairs reduces.

Unlike the positively correlated networks, we obtain a decreasing trend in P (k) for the
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Fig. 6.9: The degree distribution (P (k) versus k) for (a-d) the positively and (e)
negatively correlated networks for each correlation threshold investigated.
The degree distributions are shown only for the thresholds investigated. The
thresholds for which no patterns are visible in the spatial distributions are
labeled non-applicable (NA).

negatively correlated networks (Fig. 6.9e) for ϵ = 0. This decreasing trend suggests

there exists only a few spatial locations in the flow-field, wherein the flame intensity

oscillations are highly negatively correlated amongst themselves.

The stark differences in the degree distributions of positively and negatively correlated

networks motivate us to check the presence of degree-degree correlations. We rely on

the measures described in Sec. 6.2 to detect these correlations.

In order to verify the presence of degree-degree correlations, we plot the degree

correlation function, knn(k), against the degree (k) for all the networks investigated

in Fig. 6.10a-e. We observe that knn(k) increases with k for both the dynamical states.

This trend confirms the presence of degree-degree correlations in the networks, wherein

connections are established between nodes of similar degrees. This phenomenon is

known as assortative mixing in network theory (Newman, 2002).

Specifically, the high degree nodes are preferentially connected with other high degree

nodes. Physically, the presence of assortative mixing implies that regions with highly

correlated intensity oscillations tend to interact with other regions containing highly
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Fig. 6.10: Log-log plot of the degree correlation function (knn(k)) and degree (k)
for (a-d) the positively and (e) the negatively correlated networks during
intermittency (INT) and thermoacoustic instability (TAI) for the different
thresholds considered. The increasing trend in the plots suggest the presence
of assortative mixing in the positively correlated networks. The degree
correlation exponent (µ) and the goodness of the fit (R2) are indicated. The
thresholds for which no patterns are visible in the spatial distributions are
labeled non-applicable (NA).

correlated intensity oscillations (Newman, 2002). This leads to the formation of a core

group (a cluster) in the network that acts as a “reservoir” for coherent flame intensity

oscillations. These reservoirs manifest in the form of clusters in the spatial distributions

of degree and node strength in the positively correlated networks. Near the end wall,

we find one reservoir of coherent flame intensity oscillations which spans the majority

of the window (see Fig. 6.5).

To quantify the assortativity in the networks, one can check the presence of scaling

relation (Barabási et al., 2016; Pastor-Satorras et al., 2001) between knn(k) and k such

that knn(k) ∼ kµ. In the log-log plot of knn(k) and k shown in Fig. 6.10, we have

fitted knn(k) as kµ. All the fits are obtained by linear regression characterized by a

goodness of the fit (R2) > 90%. We observe all the networks have a µ > 0, confirming

the presence of assortativity. The value of µ ranging from 0.12 to 1.41 indicate the

different assortative nature in the networks examined in this chapter. In comparison,
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the internet network, mobile phone call network, and science collaboration network

have µ values of 0.56, 0.33 and 0.16, respectively (Barabási et al., 2016). The value of

µ > 1 is indicative of the stronger assortative nature in some of the positively correlated

networks.

The presence of assortativity in the networks indicate that any node is most likely

connected to other nodes with similar degree. Newman (2002) reported that the

removal of high degree nodes in an assortatively mixed network is an inefficient way

to destroy the network connectivity considerably. Hence, we can hypothesize that any

passive control strategies targeting the regions with high k in this combustor may be

inefficient in suppressing thermoacoustic oscillations. Any successful control action

for suppressing the oscillations might warrant overwhelming changes to the engine

design and necessitate several full-scale tests. However, dedicated experiments need

to be performed to verify this hypothesis.

6.6 CONCLUDING REMARKS

In this chapter, we have performed a weighted spatial network analysis of the local

flame intensity oscillations acquired from the CH* chemiluminescence fields during

the transition from intermittency to thermoacoustic instability in a multi-element 2D

model rocket combustor. The spatiotemporal dynamics has been studied near the end

wall region where the flame intensity oscillations are the highest. First, we showed that

the response of the jet flame to transverse acoustic oscillations is non-uniform along the

longitudinal direction of the combustor.

Our analysis unraveled fundamental differences in the connectivity of positively

and negatively correlated spatial networks. The network measures revealed the

differences in the coherence in the flame intensity oscillations during intermittency

and thermoacoustic instability. We identified that many spatial locations are populated

by high degree and high node strength during thermoacoustic instability, translating

to highly coherent flame intensity oscillations. Such network measures can be
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valuable metrics for testing the validity of computational simulations. Finally, we also

discovered the presence of assortative mixing leading to the formation of reservoirs of

coherent flame intensities. To the best of our knowledge, this is the first evidence of

assortative mixing in turbulent reactive flows.

Validation of computational simulations with experimental data, especially for high-

pressure and high power-density devices has traditionally been performed by comparing

point measurements of pressure (or other variables) measured in the experiment

temporally. In rocket combustors, where large optical access for high-speed imaging

or laser-based diagnostics is challenging, very few studies available in open literature

have performed comparison of spatiotemporal data (Hardi et al., 2016b,a; Morgan

et al., 2015; Beinke et al., 2021). In these studies, path integrated chemiluminescence

measurements were compared with heat release rate from simulations using direct

comparison of broad coherent flow features derived from time-averaged or phase-

averaged images using broadband or filtered chemiluminescence measurements.

Additional comparison was also performed by reconstructing and comparing prominent

features in the flow, sorted by highest energy content using proper orthogonal

decomposition, using experimental and computational data. This comparison

provided valuable insight in the mechanisms promoting combustion instability in

the experiments, but the qualitative nature of the comparison was insufficient for

verification and validation of the numerical results. Where more quantitative

comparisons are available, these are primarily made using temporal history of pressure

measurements with wall mounted sensors (Harvazinski et al., 2015). The amplitudes

of the experimentally obtained pressure oscillations (and other directly measured

quantities from experiments) and their dominant frequencies are compared with that

of the numerical simulations. Obtaining a match in only these features might be

inadequate and may not replicate or predict the dynamics occurring in experiments

correctly. The detailed features of the spatiotemporal data obtained from experiments

albeit very useful, are largely neglected in this validation process. We propose using
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the spatial variation of network measures (degree and node strength) along with

their distributions on the data obtained from experiments and matching numerical

simulations to tighten the validation process. Further, the validation of simulations that

aim to mimic the experimental observations in rocket or other high-power combustion

devices can be augmented by comparing the size, structure, and extent of coherence in

the flame intensity oscillations.
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CHAPTER 7

Conclusions and future prospects

In this thesis, the framework of dynamical systems theory and complex systems theory

to understand the dynamic behavior of signals acquired from a rocket combustor

is established. The recent adoption of this framework has resulted in enormous

breakthroughs in the field of gas-turbine combustion (Sujith and Pawar, 2021) and

has now become a mainstay in the analysis of oscillatory instabilities found in

thermoacoustic systems applied to gas turbine engines, aeroelastic, and aeroacoustic

systems (Pavithran et al., 2021). Using the tools from dynamical systems theory and

complex systems theory, we investigate the temporal and spatiotemporal dynamics

during the transition from a stable state to transverse thermoacoustic instability via

intermittency. Towards this purpose, we used the experimental datasets from Purdue’s

transverse instability combustor, a multi-element self-excited model rocket combustor

operating at elevated pressures based on an oxidizer-rich staged combustion cycle.

First, the framework of dynamical systems theory is used to understand the various

nonlinear behaviors exhibited by the combustor. Since the combustion dynamics is

determined by the complex nonlinear feedback interactions between the acoustic and

reactive flow subsystems, the combustor is essentially a complex system. As a result,

the frameworks of synchronization theory and complex network theory were utilized

to understand the behavior of flame intensity oscillations and its coupling with their

transverse acoustic field in the combustor.

Examining several test runs of the combustor performed for the same operating

conditions, we showed that the transition from the stable state to thermoacoustic

instability occurs via intermittency. Much of the literature on rocket combustors has

focused only on understanding the dynamics solely during the state of thermoacoustic

instability. In order to comprehensively understand the mechanisms and the associated

coupling behaviors leading to the onset of thermoacoustic instability, it is essential



to thoroughly analyze also the stable state and other dynamical states exhibited

by the rocket combustor. Throughout this thesis, we systematically study the

temporal and spatiotemporal dynamics during stable state and intermittency, along with

thermoacoustic instability.

Performing multifractal analysis of the acoustic pressure time series, we detected the

loss of multifractality during the onset of thermoacoustic instability. Importantly,

we devised several measures such as RATIO (ratio of determinism to recurrence

rate) from recurrence analysis, Hurst exponent and multifractal spectrum width from

multifractal analysis. We demonstrated the superior performance of these measures

developed from recurrence theory and multifractal analysis towards detecting the

dynamical transitions from the stable state to intermittency to thermoacoustic instability,

compared to conventional measures such as root mean square, variance, and spectral

amplitude of the acoustic pressure oscillations. Further, we showed that the recurrence

measure RATIO can be tuned to detect rapid switching from aperiodic oscillations to

periodic oscillations irrespective of the amplitude of the oscillations.

During thermoacoustic instability and periodic epochs of intermittency, we detected

the switching between period-3 and period-4 limit cycle oscillations. Further, during

thermoacoustic instability, the acoustic pressure oscillations manifested as steepened

wavefronts owing to the presence of shock waves. Such a steepened wavefront is in

stark contrast to the sinusoidal-looking limit cycle oscillations. This is exemplified in

the characteristic shape of the phase space resembling a trefoil knot. Using recurrence

analysis, we showed the presence of slow and fast timescales in the steepened

waveforms of acoustic pressure oscillations during thermoacoustic instability. The

micropatterns in the recurrence plot and the unique topology of the recurrence network

constructed from acoustic pressure oscillations during thermoacoustic instability arise

as a result of the presence of multiple timescales in the steepened wavefronts. We also

showed that such features are absent in the sinusoidal-looking limit cycle oscillations

acquired from an experimental gas turbine-type turbulent combustor.

149



The coupled interaction between the acoustic pressure and CH* intensity

(representative of heat release rate) oscillations were studied during the transition from

the stable state to intermittency to thermoacoustic instability. Since the transverse

mode was self-excited during thermoacoustic instability, we specifically analyzed this

coupled behavior at two transverse locations: near the end wall (acoustic pressure

antinode for the fundamental transverse mode) and the center (acoustic pressure node

for the fundamental transverse mode) of the combustor. We observed desynchrony

between the acoustic pressure and CH* intensity oscillations during the stable state,

which transitioned to intermittent phase synchronization during intermittency. During

thermoacoustic instability, we observed phase synchronization near the center of

the combustor while generalized synchronization (both the phase and amplitude are

synchronized) near the end wall of the combustor. From the spatial analysis of the local

CH* intensity oscillations, we identified that end wall region exhibited higher intensities

compared to the center region during intermittency and thermoacoustic instability. We

also quantified the transition from stochasticity to widespread determinism (correlation)

in the local CH* intensity oscillations during the transition to thermoacoustic instability.

Furthermore, we devised a novel method to compute the spatial Rayleigh index and

discerned that only the first few transverse modes participated in the driving process to

grow the amplitude of thermoacoustic oscillations. The other higher harmonics present

in the amplitude spectra correspond to the nonlinear wave steepening phenomenon.

The enhanced driving from the 1T mode compared to the 2T mode and other higher

harmonics were revealed from the spatial Rayleigh index.

Next, we utilized the framework of complex network analysis to build positively and

negatively correlated weighted spatial networks based on the correlation of local CH*

intensity oscillations for the different dynamical states as observed from the near end

wall region of the combustor. Using the network measures (degree and node strength)

in this analysis, we distinguished different spatial regions based on their coherence in

the flame intensity oscillations. We also unearthed the presence of assortative mixing
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in the networks, leading to the sustenance of reservoirs of coherent flame intensities.

Scope for future work

The recently realized ability to perform high-fidelity CFD simulations over entire three-

dimensional domains of an LPRE (Urbano et al., 2016; Harvazinski et al., 2020) has

enabled access to investigate the role of several variables such as fuel or oxidizer mass

fraction, local heat release rate, temperature, and vorticity fields, during the stable

state and thermoacoustic instability. However, the high-fidelity simulations need to

be validated tightly prior to such investigation. The measures illustrated in this study to

distinguish different dynamical states exhibited by the combustor can be used to validate

the temporal and spatiotemporal dynamics in high-fidelity CFD simulations targeted

towards optimizing the stability and performance metrics of the rocket combustor.

Such an approach can reduce the mismatch between hot-fire tests and high-fidelity

simulations of LPREs, resulting in shortened developmental timescales.

We showed that signals acquired from rocket combustors are different from their

gas turbine counterparts and other laboratory-scale turbulent combustors due to the

presence of gas dynamical nonlinearities in the rocket combustor. Hence, the

methodologies developed for laboratory-scale combustors and gas turbine combustors

must be tailored appropriately to be applicable to rocket combustors.

Moreover, the methodologies used to probe the spatiotemporally coupled interaction

between the acoustic pressure and flame intensity oscillations presented in this thesis

can provide novel insights into the mechanisms initiating and sustaining high-frequency

thermoacoustic instabilities. Since many real rocket engine combustors experience a

combination of longitudinal and transverse modes, it would be interesting to study the

coupled interaction between acoustics and heat release rate fields and the behavior of

local heat release rate oscillations in such configurations. Besides, a hybrid approach

involving experiments and matching high-fidelity simulations can pay great dividends

towards understanding the mechanisms behind the onset of thermoacoustic instabilities
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in flight-capable LPREs.

The recent advances in machine learning have provided an alternative approach to

analyzing thermoacoustic instabilities (Waxenegger-Wilfing et al., 2021a). Already,

machine learning methods in conjunction with physics-based measures are being

developed to devise novel precursors to the onset of thermoacoustic instabilities

(Waxenegger-Wilfing et al., 2021b; Dhadphale et al., 2021). Several promising

techniques from complex systems theory such as multilayer networks (Boccaletti

et al., 2014; Kivelä et al., 2014) and wavelet-based multiscale methods (Percival and

Walden, 2000) show great promise towards revealing the different intricate interactions

between the acoustic, flow, and combustion processes. In summary, the methods

present in this thesis are expected to encourage the adoption of tools from dynamical

systems and complex systems theory to advance our understanding of the temporal and

spatiotemporal dynamics during thermoacoustic instability and other dynamical states

in LPREs.
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APPENDIX A

Temporal analysis of acoustic pressure oscillations

A.1 ROBUSTNESS OF RECURRENCE MEASURE WITH THE SELECTION

OF RECURRENCE THRESHOLD

The temporal variation of the recurrence measure, RATIO, for different recurrence

thresholds (ϵ) is shown in Fig. A.1. The recurrence thresholds are selected as a

proportion of the maximum size (s) of the phase space attractor of acoustic pressure

oscillations reconstructed using Takens’ delay embedding theorem for Test-C. Owing to

the dependence of the magnitudes of the determinism (DET ) and recurrence rate (RR),

the absolute values of RATIO varies during the transition. However, the underlying

trend required to distinguish the different dynamical states remains intact for the all the

recurrence thresholds shown.

Fig. A.1: The variation of RATIO with time for different recurrence thresholds is
shown for Test-C. The selected recurrence thresholds are 12%, 16%, 20%
and 24% of the size (s) of the phase space attractor. The dashed lines
demarcate stable operation, intermittency and thermoacoustic instability. A
non-overlapping window size of 7.5 ms is translated in time.



A.2 STATISTICAL ANALYSIS OF MULTIFRACTAL ANALYSIS

Prior to performing the multifractal analysis, we need to estimate the range of scales

necessary to capture the multifractal characteristics of the acoustic pressure oscillations.

As explained in Section. IIB, we plot the structure function (see Fig, A.2) against

the range of binarized scales necessary to capture the small-scale and large-scale

fluctuations. From the plot, we examine the trends for the acoustic pressure fluctuations

during the dynamical states of stable operation, intermittency and thermoacoustic

instability. We observe a linear regime for the range of scales from 2 to 10 cycles

of the dominant instability frequency (2650 Hz) for all the dynamical states. Hence,

the multifractal measures such as Hurst exponent (H) and multifractal spectrum width

(α2 − α1) are computed with this range of scales.

Fig. A.2: The variation of structure function with scale for the acoustic pressure
oscillations acquired during Test - C for the dynamical states of stable
operation (green curve), intermittency (orange curve) and thermoacoustic
instability (red curve). For each dynamical state, the scales ranging from 2
to 10 cycles (blue dots) are fitted with a linear line (grey dashed line).
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Fig. A.3: The variation of Hurst exponent (H) against time for the Test-C during
the transition from stable operation to thermoacoustic instability via
intermittency. The error bars indicate 90% confidence in H . A window size
of 37.7 ms is varied in time with an overlap of 33.9 ms and q-range of 2 to 10
cycles of 2650 Hz is used.

Fig. A.4: The variation of the width of the multifractal spectrum (α2−α1) with time for
different q-range is shown for Test-C. A window size of 37.7 ms is varied in
time with an overlap of 33.9 ms. The dashed lines demarcate stable operation,
intermittency and thermoacoustic instability.

In Fig. A.3, we show the temporal variation of Hurst exponent (H) estimated for Test-

C. The error bars are estimated with a confidence of 90% based on the goodness of the

fit to measure the slope in the plot of structure function. We observe that H can be used

to robustly demarcate the onset of thermoacoustic instability from the states of stable

operation and intermittency.

The sensitivity of q-range in the computation of the width of the multifractal spectrum

(α2−α1) is plotted for Test-C in Fig. A.4. Here, we observe that α2−α1 is fairly robust

in exhibiting similar trends in the variation from stable operation to thermoacoustic

instability via intermittency.
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APPENDIX B

Effect of embedding dimension on the recurrence network of a

slow-fast system

We demonstrate the robustness of the topology of the RNs for different embedding

dimensions (d) for the modified Izhikevich model (Fig. B.1a) and time series of the

acoustic pressure oscillations acquired during the state of thermoacoustic instability in

a rocket combustor (Fig. B.1b). The corresponding embedding dimensions selected

from the modified false nearest neighbors method for these two cases are d = 6 and d =

10, respectively.

Fig. B.1: The RNs for various embedding dimensions (d) are plotted for (a) modified
Izhikevich model (Fig. 4.5) and (b) the acoustic pressure oscillations (p′)
acquired from a multi-element rocket combustor (Fig. 4.8). We observe that
the topology of the RN converges after a certain d.

In general, we observe that the RNs exhibit closed-loop structures characteristic of

periodic orbits for the range of d shown. For both cases, the realized RNs for lower

embedding dimensions are distorted. With a further increase in d, the topology of

RN converges and remains largely the same for further increase in d. In other words,

for higher d, we find characteristic features such as the number of protrusions and



clustering of nodes to be nearly the same with increasing d. However, the topology of

RN converges at an earlier d for experimental data, than that estimated by the modified

false nearest neighbors method. This observed change in the optimal d from the RN

and from the modified false nearest neighbors method is not seen in the case of the

prototypical signals. We believe that the presence of noise in the experimental data

leads to this deviation. The ability of RN to capture the features of the high-dimensional

phase space in slow-fast systems can help us to cross-verify the optimum embedding

dimension.
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APPENDIX C

Derivation of structure function for q → 0

The structure function (F q
w) of order q and span w is (as in Eq. 3.6),

F q
w =

[
1
nw

∑nw

i=1

(√
1
w

∑w
t=1 (yi(t)− yi)

2

)q]1/q
.

Here, for q → 0, the structure function (F q
w) would diverge and tend to infinity.

Therefore, in order to evaluate the structure function, a logarithmic averaging procedure

needs to be applied.

First, we make f = 1
w

∑w
t=1 (yi(t)− yi)

2.

Then, we can write Eq. 3.6 as,

F q
w =

{
1
nw

∑nw

i=1 f
q
2

} 1
q

F q
w =

{
1− 1 + 1

nw

∑nw

i=1 f
q
2

} 1
q

Then, we use limx→0 {1 + f(x)}
1

g(x) = exp
[
limx→0

f(x)
g(x)

]
to get

F q→0
w = exp

[
limq→0

{
−1+ 1

nw

∑nw
i=1 f

q
2

q

}]
F q→0
w = exp

[
limq→0

{
1
nw

∑nw
i=1 f

q
2−1

q

}]
Then, we use the formula: limm→0

xm−1
m

= log x+ m
2
log2 x+O(m2) + ...

Omitting the higher order terms, we obtain

F q→0
w = exp

{
1

2nw

∑nw

i=1 log f
}

Substituting for f back into the above equation, we retrieve Eq. 3.7, which is

F q→0
w = exp

{
1

2nw

∑nw

i=1 log(
1
w

∑w
t=1 (yi(t)− yi)

2)
}

.
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