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ABSTRACT

KEYWORDS Thermoacoustic instability; Aeroacoustic instability; Intermittency;

Limit cycle oscillations; Abrupt transitions; Fokker-Planck equation;

Canard explosions; Synchronization theory; Phenomenological

modelling; Nonlinear dynamics

Pleasant sound from a wind instrument, such as a flute, results from self-sustained periodic

oscillations arising from the interactions between an acoustic source and the acoustic

field. However, such oscillations cause catastrophic damage in engineering systems such

as, gas transport systems, combustors of rockets and land-based gas turbine engines.

These high amplitude oscillations correspond to the state of thermoacoustic instability in

combustors and are caused due to positive feedback between the fluctuating heat release

rate from the burning fuels and the acoustic field. Similarly, in large segmented solid

rocket motors, the positive feedback between the turbulent flow of hot gases passing

through the channel of segments and the acoustic field leads to aeroacoustic instability.

These oscillatory instabilities cause structural damage, reduce performance, and even

cause complete operational failure of the entire system. In turbulent combustors, past

studies were focused on the gradual transitions to the state of oscillatory instability via

the state of intermittency. Most recently, the discovery of abrupt transitions in turbulent

reactive flow systems has been a highlight, which is a contrasting scenario of a gradual

transition. At certain conditions, the system abruptly transits to the state of oscillatory

instability when a control parameter, such as fuel flow rates in gas turbines, is varied.

Thus, it is crucial to understand the underlying mechanism of such transitions to forewarn

about impending oscillatory instabilities.

Using a low-order stochastic thermoacoustic model, we show that the reported abrupt

transitions occur when an initially stable, supercritical limit cycle becomes unstable,

leading to a secondary bifurcation to a large amplitude limit cycle solution. Through
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amplitude reduction, we analyze the underlying potential functions affecting the stability

of the observed dynamical states. We make use of the Fokker-Planck equation, educing

the effect of stochastic fluctuations on subcritical and secondary bifurcation. We conclude

that a high enough intensity of stochastic fluctuations, which transforms a subcritical

bifurcation into an intermittency-facilitated continuous transition, may have little effect

on the abrupt nature of secondary bifurcation. Our findings imply the high likelihood of

abrupt transitions in turbulent combustors possessing higher-order nonlinearities where

turbulence intensities are lower compared to the large amplitude limit cycle solution.

Upon further investigation of sudden transitions at different experimental conditions in

turbulent combustors, we discovered canard explosions where we observed a continuous

bifurcation with a rapid rise in the amplitude of the fluctuations within a narrow range

of control parameters. The observed transition is facilitated via a state of bursting,

consisting of the epochs of large amplitude periodic oscillations amidst epochs of low

amplitude periodic oscillations. The amplitude of the bursts is higher than the amplitude

of the bursts of intermittency state in a conventional gradual transition, as reported in

turbulent reactive flow systems. Using the model and experimental results, we explain

that the large amplitude bursts occur due to the slow-fast dynamics at the bifurcation

regime of the canard explosion.

We further investigate the similarity of these transitions to oscillatory instabilities in an

aeroacoustic system. Self-sustained aeroacoustic oscillations are perceived as a whistle.

The whistling corresponds to the state of limit cycle oscillations (LCO) in dynamical

systems theory. An aeroacoustic system exhibits different dynamical states when the

bulk flow velocity is varied as a control parameter. Previous studies have shown that

as a control parameter varies, the whistling frequency shifts in an aeroacoustic system

having a flow through orifices. We show that such a change in frequency occurs via three

different scenarios— (1) a direct transition between two LCOs as an abrupt transition, (2)

via a state of intermittency, and (3) via a state of aperiodicity. In the current aeroacoustic



system, the abrupt transition between the LCOs is manifested as a bursting behaviour

where the amplitude of the acoustic pressure fluctuations abruptly switches between the

high and low-amplitude LCOs. Further, we use synchronisation theory to investigate the

coupled behaviour of the velocity (𝑢′) and the acoustic pressure (𝑝′) fluctuations during

the different dynamical states. Finally, our findings imply that 𝑢′ and 𝑝′ exhibit phase

synchronisation (PS) during the state of LCO, corresponding to whistling. In contrast,

𝑢′ and 𝑝′ are desynchronised during the state of aperiodicity, corresponding to stable

operation.
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Phasespace trajectory A space whose coordinates are the state variables of
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Subcritical Hopf bifurcation An abrupt discontinuous transition from a stable fixed
equilibrium point to a finite amplitude oscillatory state.
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Thermoacoustic instability Self-sustained, large amplitude oscillations of acoustic
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CHAPTER 1

INTRODUCTION

The industrial revolution in the mid-18th century embarked on extracting heat energy by

burning fuels. The heat energy so extracted was channelized through an engine to obtain

mechanical work or electrical power. Engineers soon increased these engines’ efficiency

and power output by exploiting thermodynamic principles. The heat engines’ increased

efficiency and power output encouraged humankind to build rockets and gas turbine

engines. These power-producing engineering systems face the problem of oscillatory

instabilities damaging the crucial components of the engine and sometimes even causing

the failure of the engine. These systems involve large mass flow rates of the turbulent flow

in which there is an active interaction between the vorticity, dilation, entropy, and acoustic

pressure fields. Therefore, these systems are also referred to as aero-thermoacoustic

systems (Mawardi, 1956). Majorly these systems are studied under two categories: (1)

thermoacoustic systems and (2) aeroacoustic systems. Thermoacoustic systems involve

the interaction between the hydrodynamic field, unsteady heat release rate fluctuations and

the acoustic field. In aeroacoustic systems, the interactions are between the hydrodynamic

field and the acoustic field in the absence of the effect of heat energy. The current thesis

deals with the investigation of the transition to high amplitude oscillatory instabilities in

these thermoacoustic and aeroacoustic systems.

1.1 THERMOACOUSTIC SYSTEMS

The history of thermoacoustic systems dates back to 18th century when Higgins (1802)

reported a sound from a tube having a hydrogen flame. Later, Leconte (1858) reported

the relationship between sound and flames when he noticed that flames responded

synchronously to music. Since then, the dynamics of thermoacoustics systems evolved



from being a mere academic curiosity to a significant concern with the advent of high-

intensity combustion systems. Disastrous thermoacoustic oscillations were discovered in

blast furnaces, boilers, and heating systems that were fired by oil, coal and gas (Putnam,

1971). The aftermath of World War II saw the power dominance race among Western

powers, leading to the development of advanced combustion systems such as rockets, gas

turbines and air-breathing engines. These advanced combustion systems were haunted

by catastrophic thermoacoustic instability (Culick and Yang, 1995). For instance, the

rocket engines of the Saturn-V in the Apollo mission faced severe combustion instability,

which was then technically resolved after numerous trial and error attempts (Oefelein

and Yang, 1993). The problems of thermoacoustic oscillations were also found in soviet

union rockets RD-170 and RD-171 (Dranovsky, 2007). The detrimental oscillations of

combustion instability were observed even in missile systems (Blomshield, 2001).

Further, in land-based power plants, gas turbines play a crucial role due to their reliability

in producing uninterrupted power. However, this reliability comes at the cost of exhaust

emissions, including environmental pollutants such as carbon monoxide (CO), nitrogen

oxides (NO𝑋) and unburnt hydrocarbons (UHC) (Sawyer, 2009). Specifically, NO𝑋

emissions sought the higher concerns due to their tendency to impact the ozone layer and

cause acid rains (Koo, 2011). Thus, several studies proposed to operate the combustors

at fuel-lean conditions, which reduce the NO𝑋 emissions (Lefebvre and Ballal, 2010).

However, the lean limit conditions increased the probability of combustion instability

(Lieuwen and Yang, 2005).

1.1.1 Thermoacoustic instability

Thermoacoustic instability is characterized by the undesirable high amplitude acoustic

pressure fluctuations and heat release rate fluctuations present in the combustion chamber.

The pressure waves are amplified by the unsteady heat release rate fluctuation, which

forms the acoustic source. After reflections from the wall boundaries, these pressure

waves influence the heat release rate fluctuations.
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A positive feedback loop is established when the heat release rate by flame is in phase

with acoustic pressure fluctuations (Rayleigh, 1878). Here, energy addition and retraction

by heat release fluctuations occur at the compression and rarefaction of the pressure

wave, respectively. Thus, the fluctuations can exponentially grow until a nonlinearity

takes over, resulting in the saturation of the acoustic pressure amplitude. The saturation

in the amplitude growth occurs due to the balance between energy addition and energy

losses in the combustion chamber, resulting in self-sustained oscillations (Sujith and

Pawar, 2021). These large amplitude oscillations lead to loss of structural integrity

through mechanical vibrations and cause the failure of thermal protection systems due to

enhanced heat transfer (Lieuwen and Yang, 2005). Thermoacoustic instabilities are also

a major problem in other engineering systems such as liquid rocket engines (Anderson

and Yang, 2012), solid rocket motors (Summerfield et al., 1992), ramjet and scramjet

engines (Byrne, 1983; Ouyang et al., 2016, 2017; Liou et al., 1997; Davis, 1981). Despite

decades of active research, the appearance of thermoacoustic instability has remained a

serious problem in the design and development of modern combustors. Thus, predicting

and controlling such oscillatory instabilities requires an understanding of the underlying

physics of the nonlinear interactions between fluctuations in acoustic pressure and heat

release rate of thermoacoustic systems.

1.1.2 Traditional approach for analysis of thermoacoustic instability

According to the classical analysis, when the combustor dynamics change from desired

stable operation to undesired high amplitude pressure fluctuations, the thermoacoustic

system is considered to be linearly unstable. In linear stability analysis, small perturbations

are deliberately given to the system, and the evolution of these perturbations is examined

to determine whether the system is linearly stable or not. If a perturbation grows

exponentially, the system is linearly unstable. If all the given perturbations decay

exponentially, the system is linearly stable. For a system without any energy source,

the acoustic field is represented by the classical wave equation (Dowling and Williams,

1983; Hirschberg and Rienstra, 2004). The solutions to the wave equation are obtained
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by representing the acoustic oscillations as harmonic waves, 𝑝′ = 𝑅𝑒(𝑝𝑒𝑖𝜔𝑡) and

𝑢′ = 𝑅𝑒(�̂�𝑒𝑖𝜔𝑡). Upon solving the differential equation with appropriate boundary

conditions, we obtain the acoustic mode shape and the corresponding eigenfrequency.

The eigenfrequencies so obtained are complex in nature. The real part corresponds to the

oscillation frequency, while the imaginary part reflects the rate at which the oscillations

grow or decay. For systems without any energy sources or sinks, the imaginary part is

zero. However, when a flame is present—acting as a source of acoustic energy—certain

eigenfrequencies may exhibit a negative imaginary part, depending on the configuration

of the system. This negative imaginary component indicates that the acoustic oscillations

grow exponentially over time.

A quantitate representation of the interaction between time-varying heat release and

acoustic waves is crucial in determining the oscillation frequency. One of the widely

known approaches for representing this interaction is the 𝑛 − 𝜏 model, proposed by

Crocco and Cheng (1956). The model involves empirically obtaining a linear relationship

between the acoustic field and the heat release rate fluctuations ( ¤𝑞′) of the system.

Mathematically, the relationship is expressed as ¤𝑞′ = 𝜂𝑢′(𝑡 − 𝜏). Here, 𝑢′ represents

the velocity fluctuations of the acoustic field, 𝜏 is the delay, and 𝜂 is the strength of

growth or decay of the oscillations (Bloxsidge et al., 1988; Macquisten, 1995; Dowling,

1997). This model has been widely applied to investigate combustion instabilities in

liquid propellant rocket engines (Culick, 1988).

One of the prominently established methods for studying flame dynamics is through

flame transfer functions. This technique relates the flame’s heat release response to

acoustic perturbations at a given excitation frequency 𝑓 , assuming a fixed amplitude of

the input disturbance. Here, the relationship between the flame and the acoustic pressure

fluctuations is obtained using a flame transfer function (FTF) at a particular forcing

frequency 𝜔. FTF measures the linear response of the heat release rate perturbations ( ¤𝑞′)
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to the external velocity perturbations (𝑢′) at different values of forcing frequency and is

given as,

𝐹𝐹𝑇 (𝜔) =
¤𝑞′(𝜔)/𝑞
¤𝑢′(𝜔)/�̄�

(1.1)

where 𝑞 and �̄� represent the mean of the heat release rate fluctuations and the velocity,

respectively. Thus, this method can investigate the interaction between the flame and

the acoustics field to a certain extent. The response of the interaction is then utilized to

derive low-order models. Numerous studies have used FTF to perform linear stability

analysis in theoretical models (Bloxsidge et al., 1988; Fleifil et al., 1996; Candel, 2002)

and experimental systems ranging from laminar (Baillot et al., 1992; Ducruix et al.,

2000) to turbulent flames (Külsheimer and Büchner, 2002).

Further, a thermoacoustic system can also be modelled as a network of interconnected

acoustic elements. Each component—such as the air/fuel supply, flame, combustion

chamber, and exit nozzle—is characterized by a linear relationship that links the acoustic

variables. By combining the transfer functions of these individual elements, similar to that

of control systems, a system of linear equations can be constructed. The eigenvalues of

this system determine the stability characteristics, while the corresponding eigenfunctions

define the acoustic mode shapes. Several studies have utilized this approach in studying

thermoacoustic systems (Krebs et al., 1999; Polifke et al., 2001; Paschereit et al., 2002).

1.1.3 Dynamical systems and complex systems approach

Linear stability analysis predicts the exponential growth of infinitesimally small

disturbances when a system is linearly unstable. However, in real combustors, once

instability sets in, the oscillation amplitude does not grow indefinitely but instead

saturates into a limit cycle. While linear theories, along with studies on flame response,

offer a strong basis for analyzing thermoacoustic instabilities and provide critical

insights, they fall short of capturing the full scope of the dynamics. Due to the inherent

nonlinearities in thermoacoustic systems, the actual behaviour can be far more complex

than just growth and saturation (Dowling, 1997; Kabiraj, 2012; Balasubramanian and
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Sujith, 2008a).

Hopf bifurcations and the phenomenon of triggering

A systematic way to study thermoacoustic instability is through numerical simulations

or laboratory experiments that explore how changes in system parameters influence

overall dynamics Kabiraj (2012). This process helps in isolating the impact of individual

parameters on system stability, often resulting in stability maps, and provides insight into

the behaviour of the system when it becomes unstable (Etikyala and Sujith, 2017; Singh

et al., 2021). This approach, formally known as bifurcation analysis (Strogatz, 2018),

has been widely used in both academic settings—such as studies on electrically heated

Rijke tubes (Matveev, 2003; Subramanian et al., 2010; Juniper, 2011)—and industrial

combustion systems (Knoop et al., 1997; Lieuwen, 2002). These investigations primarily

focus on how a system transitions from a stable steady state to instability, typically

marked by the onset of limit cycle oscillations.

The qualitative change in the behaviour of a dynamical system is referred to as a bifurcation

(Strogatz, 2018). Similarly, in combustors, a transition from a stable operating condition

to an unstable operating condition is referred to as a bifurcation (Lieuwen, 2002). Limit

cycle oscillations emerge due to underlying nonlinearities of thermoacoustic systems.

The transition of a dynamical system from a fixed point to a limit cycle solution owing to

a change in the control parameter is referred to as a Hopf bifurcation (Strogatz, 2018).

If, during the transition, the amplitude of the limit cycle increases gradually, then it is

referred to as a supercritical Hopf bifurcation. If, on the contrary, the transition is abrupt,

it is called a subcritical Hopf bifurcation. The subcritical nature of the transition gives rise

to phenomena like hysteresis and triggering, particularly within the subcritical instability

regime (Matveev, 2003; Mariappan et al., 2010; Juniper, 2012). These behaviours are

especially undesirable in practical combustion systems due to the potential for sudden

and difficult-to-control oscillations
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One of the intriguing nonlinear behaviours observed in thermoacoustic systems is the

phenomenon of triggering instability. This refers to the onset of instability in a system that

is linearly stable but becomes unstable when subjected to finite amplitude disturbances.

If one observes the subcritical bifurcation, there are three main regimes for the control

parameter: region of global stability, bistable regime (fixed point and limit cycle) and the

stable regime of limit cycle oscillations. The thermoacoustic system can exhibit a silent

(normal operating condition) state when the control parameter is at a stable fixed point in

the bistable regime. However, at the same control parameter value, any perturbations that

kick the pressure amplitude of the system near the limit cycle regime cause the system

to exhibit thermoacoustic instability. Such disturbances may arise, for instance, during

spark plug ignition or small explosions in the combustion chamber. In such a scenario,

the probability of not having thermoacoustic instability depends on the amplitude of

initial disturbances falling below a certain threshold value. These initial disturbances, in

general, depend on the flow conditions, distribution of the local equivalence ratio and the

geometry of the combustor.

In the 1960s, a common method for evaluating the stability of the combustion system of

liquid and solid propellant rocket engines involved introducing pressure pulses through

controlled explosions and analyzing the response of the system. These experiments

revealed that such finite-amplitude perturbations could induce instability, a behaviour

that became known as pulse-triggered or triggering instability (Anderson and Yang,

1995). Several studies have included the velocity coupling with the nonlinear combustion

model in order to analytically describe the triggering instability (Levine and Baum, 1983;

Wicker et al., 1996; Burnley and Culick, 2000).

Hysteresis is another critical nonlinear phenomenon in combustion systems, alongside

triggering. It arises in systems that undergo a subcritical Hopf bifurcation, where the

system’s stability depends not only on the current operating conditions but also on its

past states. Because of this, returning to previously stable operating parameters does
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not necessarily restore stability unless the system fully exits the hysteresis zone. As

subcritical bifurcations are commonly observed in thermoacoustic systems, hysteresis

has been reported in multiple studies (Knoop et al., 1997; Matveev, 2003; Mariappan

et al., 2010; Gopalakrishnan and Sujith, 2014)

More than Hopf bifurcations

The view of thermoacoustic systems, however, is more than a mere Hopf bifurcation

from fixed points or limit cycles. Although more complex pressure oscillations had been

observed in the context of thermoacoustic instability, these findings initially received

limited attention (Jahnke and Culick, 1994; Sterling, 1993; Lei and Turan, 2010; Keanni

et al., 1989). However, more of these non-linear behaviours of thermoacoustic systems

came to light by the work of Kabiraj et al. (2012b,a); Kabiraj and Sujith (2012);

Kabiraj (2012), who employed nonlinear time series analysis to systematically investigate

bifurcations in laminar thermoacoustic systems involving simple ducted flames. Their

studies revealed that, beyond reaching a limit cycle, thermoacoustic systems can undergo

additional bifurcations, leading to states such as quasiperiodicity, frequency locking,

period-n oscillations, intermittency, and even chaos. In another study by Guan et al.

(2020) a distinct route to chaos via intermittency in a laminar thermoacoustic setup was

discovered. More recently, strange nonchaotic attractors were observed in both laminar

and turbulent thermoacoustic systems Premraj et al. (2020); Thonti et al. (2024). These

findings underscore that thermoacoustic systems can exhibit more complex dynamics. In

the following section, we extend this discussion to complexity in turbulent reacting flow

systems.

1.1.4 Dynamics of turbulent combustors

Turbulence greatly increases the complexity of thermoacoustic systems by introducing a

wide spectrum of interacting scales and many degrees of freedom. Additionally, these

systems are influenced by other intricate phenomena such as chemical reactions, molecular

mixing, and their coupling with acoustic fields. Thus, thermoacoustic instabilities
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in turbulent combustors often exhibit characteristics that go beyond the traditional

interpretation based on Hopf bifurcation theory (Sujith and Unni, 2020). The state of

stable combustor operation is seldom a fixed point. This state is better characterised by

aperiodic fluctuations arising due to turbulence and is referred to as combustion noise

(Candel et al., 2009; Gotoda et al., 2011). In fact, the aperiodic pressure fluctuations

during combustion noise have high dimensional chaos and multifractal signatures (Nair

et al., 2013; Tony et al., 2015; Nair and Sujith, 2014).

Nair et al. (2014) reported that the change of the state of a system from combustion noise

to limit cycle oscillation takes place through the state of intermittency. Intermittency

is an intermediate state characterised by bursts of periodic high-amplitude oscillations

amidst epochs of aperiodic low-amplitude fluctuations. Thus, intermittency has the

imprint of both combustion noise and TAI. Transition to TAI through intermittency has

been confirmed in many studies since (Gotoda et al., 2014; Huang, 2015; Kabiraj et al.,

2015a; Kheirkhah et al., 2017). The occurrence of intermittency leads to a smooth

variation of statistical measures of the system, such as the root-mean-squared (rms) or

Fourier amplitude, as the state of a system changes from a state of combustion noise to

TAI. Thus, we see that the transition to thermoacoustic instability occurs from a state

of chaos to limit cycle oscillations via a state of intermittency. Further, several studies

have attempted to model the behaviour of turbulent combustors from the state of stable

operating condition (low amplitude aperiodic oscillations) to thermoacoustic instability

(high amplitude limit cycle oscillations), which will be discussed in the following section.

1.1.5 Nonlinear oscillator models to describe thermoacoustic system

In modelling the transitions to thermoacoustic instability, the state of combustion noise is

often assumed to be of stochastic origin (Clavin et al., 1994; Burnley and Culick, 2000) in

view of the difficulty in modelling pressure fluctuations that have chaotic and multifractal

characteristics. Thus, modeling studies incorporate the fluctuations as additive (Burnley

and Culick, 2000; Noiray and Schuermans, 2013; Clavin et al., 1994; Noiray and Denisov,
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2017; Bonciolini et al., 2017; Gopalakrishnan et al., 2016) and multiplicative noise

(Kasthuri et al., 2019; Clavin et al., 1994; Burnley and Culick, 2000) in models of

supercritical and subcritical bifurcation. These stochastic models are then analyzed

by deriving the Fokker-Planck equation from which a stationary solution is obtained

(Gopalakrishnan et al., 2016; Bonciolini et al., 2017; Noiray and Denisov, 2017). The

solution of the Fokker-Planck equation yields the evolution of the probability density

function (PDF) of the envelope of the amplitude of fluctuations during the transition

(Noiray and Schuermans, 2013; Noiray and Denisov, 2017).

Further, some of the models have incorporated explicit slow and fast time scales in

lower-order models to capture the amplitude-modulated dynamics such as mixed mode

oscillations and bursting dynamics (Kasthuri et al., 2019; Tandon et al., 2020). Varghese

et al. (2021) used the fractional order differential equation counterpart for the Van der Pol

oscillator to model the multifractal characteristics of the acoustic pressure oscillations

of the turbulent combustor. Another approach to model transitions in thermoacoustic

systems is by a kicked oscillator model given by Matveev and Culick (2003). The model

considers that vortices emerging from unstable shear layers are shed into the combustion

chamber and ignite intensely after a certain delay. The resulting transient heat release

acts as a source of acoustic energy, exciting the chamber’s natural modes. These acoustic

oscillations, in turn, influence the vortex-shedding process—altering both the frequency

and strength of the vortices. This interaction forms a feedback loop that can destabilize

the system. Later, studies have incorporated the kicked oscillator model to describe the

intermittency route to thermoacoustic instability (Nair and Sujith, 2015; Seshadri et al.,

2016).

1.1.6 Noise-induced oscillations in thermoacoustic systems

Practical thermoacoustic systems are inherently noisy due to various internal

fluctuations. These noise sources may include turbulence-induced variations in the flow

field, flow separation, irregularities in the fuel-air supply, and unsteady heat release
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during combustion. As a result, pressure signals in combustors always exhibit

noise-driven characteristics (Kabiraj et al., 2020).

In a sub-threshold regime (globally stable fixed-point regime) of the Hopf bifurcations,

noise plays a major role in the practical purpose of prediction and control of thermoacoustic

instability. These prediction methods are based on the concepts of stochastic resonance

(SR) and coherence resonance (CR). In SR, a weak periodic input to the system is

amplified due to the presence of noise, enhancing the system’s ability to detect or respond

to the signal (Benzi et al., 1981; Douglass et al., 1993). Coherence resonance (CR) is a

similar phenomenon, but it occurs without any external forcing. In CR, noise enhances

the system’s intrinsic frequencies, resulting in intermittent and nearly periodic damped

bursts (Ushakov et al., 2005; Zakharova et al., 2010).

In systems undergoing subcritical Hopf bifurcations, the CR resonances emerge before

the onset of bistability, i.e. before the saddle-node point or before the bistable regime.

In supercritical bifurcations, they appear prior to the Hopf threshold. As a result, these

behaviours can serve as early warning signs for transitions into practically dangerous

dynamical states. Recent studies have experimentally demonstrated coherence resonance

and associated P-bifurcations in thermoacoustic systems (Kabiraj et al., 2015c; Saurabh

et al., 2017), as well as in simplified models of such systems (Gupta et al., 2017),

underscoring their relevance in the predictive analysis of combustion instability. A recent

study by Li et al. (2019) showed that as the intensity of external noise was gradually

increased, the system exhibited a stochastic P-bifurcation, which is evident from the

smooth transitions observed in the stationary probability density functions (PDFs). In a

recent experimental study, Vishnoi et al. (2024b,a) investigated an electroacoustic Rijke

tube simulator exhibiting a subcritical Hopf bifurcation, focusing on the influence of

noise characteristics in the subthreshold regime. Their analysis examined variations in

the coherence factor and Hurst exponent, revealing that the coherence factor serves as a

dependable early indicator of impending instability.
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However, higher noise-induced perturbations take a disadvantageous ground when they

are at the bistable region, leading to the phenomenon of triggering. Waugh and Juniper

(2011) examined how different types of additive noise—white, blue, and pink—can

trigger thermoacoustic instability in a Rijke tube operating within the bistable regime.

Their results showed that pink noise was the most effective at inducing instability. They

also found that a minimum threshold amplitude of noise was necessary to trigger the

transition, and this threshold varies depending on the spectral nature of the noise. The

triggering phenomenon causes intermittent bursting. Unlike oscillations in CR, the

bursting oscillations in triggering have high amplitude and are not damping in nature.

The interval of these bursts increases as one approaches the Hopf point (Bonciolini et al.,

2017). This effect is seen as a gradual transition in the root mean square (rms) value of

the acoustic pressure oscillations. For instance, Gopalakrishnan et al. (2016) showed that

abrupt subcritical bifurcation in a laminar thermoacoustic system becomes continuous at

high enough noise intensity.

Further, oscillatory instabilities are an emergent phenomenon in fluid flows, often

accompanied by a high degree of coherence in turbulent flows. This behaviour is an

indication of the characteristics of complex systems. The self-organization in turbulent

flow leads to the development of an ordered acoustic field, occurring without any need for

external forcing (Sujith and Unni, 2020). The approaches and techniques from complex

system theory used to study thermoacoustic systems can also be utilised to investigate

flow-induced oscillatory instabilities in other fluid mechanical systems. Thus, in the

spirit of complex systems, we would like to explore the generic nature of the transitions

in fluid flows of thermoacoustic and aeroacoustic systems.

1.2 DYNAMICS OF AEROACOUSTIC SYSTEMS

The whistling sound produced when a flow jet passes through the consecutive plates

with holes is called a hole tone (Chanaud and Powell, 1965). A flow separation from the
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edge or a cavity induces an unsteady flow with shear layer instabilities. The disturbances

downstream of the flow propagate toward the source of the flow separation, acting as

positive feedback and giving rise to self-sustained oscillations (Rockwell, 1983). These

self-sustained oscillations are heard as a whistling sound. Based on the types of shear

layers and impingement geometries, the tones are classified as hole tone, ringtone, edge

tone, and shear tones (Rockwell and Naudascher, 1979). The first hole tone was reported

by Sondhauss (1854). Since then, various experiments have been performed on the hole

tone produced in the flow across consecutive orifices (Hourigan et al., 1990; Huang and

Weaver, 1991; Billon et al., 2005; Matsuura and Nakano, 2011; Sano and Oyaizu, 2008)

The self-sustained acoustic pressure oscillations in engineering systems, having a confined

flow through cavities, cause fatigue and damage the structural integrity. The whistle sound

is often referred to as aeroacoustic instability. In many large solid propellant rocket motors,

the segmented grains are separated by inhibitors, which remain unburnt as the propellant

burns. These unburnt residual structures cause shear layers which, when impinging on

a similar upcoming residual structure, give rise to self-sustained oscillations (Nomoto

and Culick, 1982; Shanbhogue et al., 2003). Aeroacoustic instabilities in combustion

chambers were first studied by Flandro and Jacobs (1973). Past studies have shown

that a significant increase in the magnitude of the acoustic wave occurs when the vortex

shedding frequency is comparable with the fundamental acoustic mode of the cavities in

the chamber (Flandro and Jacobs, 1973; Dunlap and Brown, 1981).

Self-sustained oscillations in a confined flow through gas pipeline systems induce

cracks, thereby causing mechanical failures (Bruggeman et al., 1986; Tonon et al., 2011;

Nakiboğlu and Hirschberg, 2012; Mohammed Al-Muslim et al., 2013). Double orifices

are applied to avoid cavitation and turbulence noise in the pipelines; however, they

are subjected to aeroacoustic instabilities (Sano and Oyaizu, 2008). On the contrary,

self-sustained oscillations are the source of pleasant music from the flue instruments

such as the flute, recorder, flue organ pipe, and human whistling (Fabre et al., 2012;
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Howe, 1975)

Several known theories are put forth to explain the phenomenon of whistling. Rayleigh

proposed the feedback mechanism for the hole tone generation (Chanaud and Powell,

1965; Rockwell and Naudascher, 1979). According to this mechanism, there are a series

of subsidiary processes, such as the origination of the disturbances in the jet shear layer,

transport and amplification of these disturbances leading to the formation of the vortices,

pressure wave generation due to the impingement of the vortices, upstream propagation

of the pressure waves that influence the disturbances through feedback. Anderson (1952)

proposed that the separated shear flow at the leading edge of the orifice plate produces

fluctuations in the effective orifice area due to the growth and periodic shedding of

vortices. He then conjectured that these effective area fluctuations lead to pressure

fluctuations, giving rise to the tonal sound.

Hourigan et al. (1990) experimentally and numerically investigated the generation and

feedback of the sound on the vortex shedding in a flow-through two consecutive baffles in

a duct. In this study, they showed that the generation of acoustic energy is dependent on

the phase of the acoustic cycle corresponding to the vortex passing the baffle. They have

also modelled the source of acoustic energy due to vortex street using Howe’s theory

of aerodynamic sound (Howe, 1975, 1980). According to Howe’s theory, the acoustic

power generated by a vortex as it passes through a sound field is proportional to the

scalar triple product of the vorticity, the velocity of the vortex, and the acoustic particle

velocity. Sano and Oyaizu (2008) experimentally investigated the generation of sound

through a pipe containing two closely spaced orifices. They used hotwire anemometer to

determine the convective velocities of the vortices. They showed that vortex shedding

frequency is locked with the acoustic modes of the pipe but increases slightly with the

bulkflow velocity.

As the Reynolds number 𝑅𝑒, based on the bulk flow velocity, varies in a flow-through
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orifice, the frequency of the self-sustained oscillations shifts (Rockwell, 1983; Huang and

Weaver, 1991). The variation in 𝑅𝑒 is associated with a variation in the sound pressure

level (SPL) in a particular trend. As 𝑅𝑒 increases initially, the SPL rises to reach a local

maximum and then decreases to a local minimum at the time of frequency switching. An

increase in 𝑅𝑒 again leads to a rise in SPL to reach another local maximum and further

decrease to a local minimum for the next frequency shift (Sano and Oyaizu, 2008; Tonon

et al., 2011; Karthik et al., 2008; Testud et al., 2009). Past studies have shown that a

clear whistle tone corresponding to a particular frequency is heard at the maxima of the

sound pressure level.

1.2.1 Aeroacoustic systems under the purview dynamical systems theory

Recent studies have performed time series analysis with the perspective of dynamical

systems theory to investigate the dynamics of aeroacoustic systems (Nair and Sujith, 2016;

Boujo et al., 2020; Pavithran et al., 2020; Bourquard et al., 2021). The self-sustained

oscillations during the clear tone of whistling correspond to limit cycle oscillations in

dynamical systems. Nair and Sujith (2016) used a model-free approach to predict the

onset of aeroacoustic instability by making use of certain properties of the observed

acoustic pressure signal prior to the onset of instability. In their study, unsteady pressure

signals were acquired from an initially silent state to the state of aeroacoustic instability. It

was shown that signals display intermittent temporal bursts before the onset of instability.

Other studies have also reported the state of intermittency in turbulent flow through

orifices (Pavithran et al., 2020) and grazing flow (Bourquard et al., 2021). Bourquard

et al. (2021) have modelled the supercritical bifurcation observed in their system, which

has turbulent grazing flow, using stochastic differential equations.

As mentioned earlier, aeroacoustic systems that have confined flow through orifices have

frequency shifts. However, what is the dynamical state of the system during this frequency

shift has not been addressed in past studies. Often, the statistical measure rms of the

pressure signal is represented as a continuous curve in aeroacoustic systems (Stubos et al.,
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1999; Karthik et al., 2008, 2001). There are instances where the abrupt jump is observed

in the rms of the pressure signal (Kriesels et al., 1995; Tonon et al., 2011). However,

a study focusing on abrupt transitions is found to be lacking in aeroacoustic systems.

In the fluid mechanical systems which are studied under the purview of dynamical

systems theory, such as thermoacoustic systems with turbulent flow, abrupt transitions

are observed from one LCO to another LCO via secondary bifurcations (Singh et al.,

2021). Is there a possibility of having such abrupt transitions from one LCO to another

LCO in an aeroacoustic system that has a flow through consecutive orifices? The current

study reports the observation of the state of intermittency during the frequency shift as

𝑅𝑒 increases. Upon further increase in 𝑅𝑒, the abrupt transition from high amplitude

LCO to low amplitude LCO is also observed.

Feedback from the acoustic field plays a major role in aeroacoustic instabilities. Huang

and Weaver (1991) found that the shear layer instability could be driven to higher sound

pressure levels or completely eliminated by an acoustic signal as feedback, depending

on the phase shift given to the feedback signal. Acoustic perturbations, as feedback,

influence the structure of nonlinear unsteady wake (Ffowcs and Zhao, 1989). Henceforth,

it is important to consider a framework that helps in investigating the coupling behavior

of the acoustic and hydrodynamics to explain the dynamics observed in aeroacoustic

systems. The self-sustained oscillations emerging from the interactions between the

acoustics and the hydrodynamics of the present aeroacoustic system under consideration

allow us to make use of synchronisation theory.

1.3 MOTIVATIONS AND RESOLUTIONS

The nonlinear interactions between the chemically reactive flow and the acoustic field

make a thermoacoustic system a complex system. Hence, it is practically easier to

observe and substantiate several theoretically known complex systems phenomena using

thermoacoustic systems (Kabiraj et al., 2012b; Sujith and Unni, 2020). These phenomena
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are also helpful in developing computationally efficient low-order models to tackle the

problems of thermoacoustic instability. One such phenomenon is the abrupt transition via

secondary bifurcation. Ananthkrishnan et al. (1998, 2005) hypothesized the possibility

of a secondary bifurcation from an initially stable primary limit cycle to a large amplitude

secondary limit cycle solution in practical systems having higher-order nonlinearities.

In secondary bifurcation, as the control parameter varies, the system exhibits a primary

supercritical bifurcation to low amplitude limit cycle oscillation followed by an abrupt

secondary transition to high amplitude limit cycle oscillation. Interestingly, albeit

dangerous in nature, secondary bifurcation was then experimentally confirmed in laminar

(Mukherjee et al., 2015) and, very recently, in turbulent (Roy et al., 2021; Singh et al.,

2021; Wang et al., 2021) thermoacoustic systems.

In turbulent thermoacoustic systems, the stable operating condition is characterized

by chaotic oscillations (Gotoda et al., 2011), and the unstable operation condition

corresponds to an ordered state of periodic oscillations (Mondal et al., 2017). The

emergence of order via the state of intermittency is predominantly observed as a gradual

change in the root mean square (rms) value, a statistical measure of acoustic pressure

oscillations. Hence, in turbulent systems, the bifurcation is viewed as a gradual emergence

of order from a state of chaos (Mondal et al., 2017; Pavithran et al., 2020). In contrast to

this gradual transition via the intermittency state, there are reports of abrupt transitions—

a sudden discontinuous jump in the rms of the acoustic pressure oscillations. The

occurrence of both abrupt and continuous transitions in thermoacoustic systems makes

apparent the significant challenge in their modelling. In addition, the observation of

abrupt secondary transition (Roy et al., 2021; Singh et al., 2021; Wang et al., 2021)

in highly turbulent thermoacoustic systems is not understood clearly. Specifically, the

explanation for what makes a transition continuous and another abrupt has been found

lacking in the literature. In this study, we illustrate the conditions for the contrasting

scenarios of gradual and abrupt transitions in turbulent combustors.
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Further, abrupt transitions are also referred to as explosive transitions and are characterized

by the phenomenon of hysteresis (Kumar et al., 2015). The occurrence of hysteresis is due

to the simultaneous presence of multiple stable regimes for a range of control parameters

(Zou et al., 2014). However, in practical engineering systems, there are exceptions

where a genuine steep rise in the statistical measure of the oscillations is observed, but

the transition is not discontinuous (Brøns and Bar-Eli, 1991). Such transitions, where

a rapid rise in the magnitude of the fluctuation occurs for a minute increment in the

control parameter, were primarily investigated in the Van der Pol oscillator model and

are referred to as canard explosions (Krupa and Szmolyan, 2001). A canard explosion is

one of the most remarkable dynamical behaviours observed in systems with distinct time

scale separation. It describes a rapid transition, occurring over a very narrow parameter

range, from small oscillations emerging from a Hopf bifurcation to large relaxation-type

oscillations characterized by alternating slow and fast phases.

Canard explosions have been reported in many real-world systems such as chemical

oscillations (Brøns and Bar-Eli, 1991), ground dynamics of an aircraft (Rankin et al.,

2011), neuronal activity (Moehlis, 2006), predator-prey food chains (Deng, 2004), and

light emitting diodes (Marino et al., 2011). The dynamics of the system during this

transition become highly sensitive to variation in the control parameter. There is a

significant growth in the magnitude of the oscillation for an exponentially small range of

values of the control parameter at the canard explosion regime (Brøns and Bar-Eli, 1991).

The phenomenon describes a rapid transition occurring over a very narrow parameter

range; the small oscillations emerge from a Hopf bifurcation to large relaxation-type

oscillations characterized by alternating slow and fast phases. A family of periodic orbits

can be observed following a segment of the unstable inner branch of the critical manifold

for a significant duration. These trajectories are known as canard orbits, giving rise to

the term canard explosion (Eckhaus, 1983).

Since the transition is rapid and occurs at an infinitely small range of parameters, a
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canard explosion appears abrupt if there is a lack of resolution in the variation in system

parameters (Diener, 1984). A continuous transition comprising a canard explosion,

albeit appears abrupt, traces the same forward and reverse path in the control parameter

variation (Börgers, 2017). Further, large magnitude bursts and mixed-mode oscillations

are observed when the system exhibits slow-fast dynamics at the canard explosion regime

(Han and Bi, 2012; Desroches et al., 2013).

Here, we report the observation of canard explosions in thermo-fluid systems for the first

time, to the best of our knowledge. The current thesis presents the experimental results

for the rapid rise in the magnitude of the acoustic pressure oscillations within a minute

range of the control parameter, a principal feature of the canard explosion. The transition

is continuous in nature and exhibits no hysteresis. A bursting behaviour comprising

bursts of large amplitude acoustic pressure oscillations near the canard explosion regime

is also observed. Through experimentally measuring the exhaust gas temperature during

the state of bursting, the current study shows that a system parameter fluctuates at a

time scale slower than the system oscillations. Further, the observed transition of the

canard explosion is described using a phenomenological thermoacoustic model. Using

the model, we attribute the bursting behaviour during the canard explosion to a coupling

between a slow oscillatory term and a system variable which drives the system towards

oscillatory instability.

Further, in aeroacoustic systems, whistling corresponds to the state of limit cycle

oscillations (LCO) in dynamical systems theory. An aeroacoustic system exhibits

different dynamical states when the bulk flow velocity is varied as a control parameter.

Understanding the dynamical states and the transitions between them, as the control

parameter is varied, is crucial in designing control strategies for such aeroacoustic

oscillations. Previous studies have shown that as a control parameter varies, the whistling

frequency shifts in an aeroacoustic system that has a flow through orifices. We show that

such a change in frequency occurs via three different scenarios— (1) a direct transition
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between two LCOs as an abrupt transition, (2) via a state of intermittency, and (3)

via a state of aperiodicity. In the current aeroacoustic system, the abrupt transition

between the LCOs is manifested as a bursting behaviour where the amplitude of the

acoustic pressure fluctuations abruptly switches between the high and low-amplitude

LCOs. The current study further shows that the dynamical state and the transition

between them during the frequency shift have a correlation with the magnitude of the

frequency shift. Using recurrence theory we show that there is a change in the dynamical

state of the system during the frequency shift. Further, we use synchronisation theory

to investigate the coupled behaviour of the velocity (𝑢′) and the acoustic pressure (𝑝′)

fluctuations during the different dynamical states. Our findings imply that 𝑢′ and 𝑝′

exhibit phase synchronisation (PS) during the state of LCO, corresponding to whistling.

In contrast, 𝑢′ and 𝑝′ are desynchronised during the state of aperiodicity, corresponding

to stable operation. Furthermore, the bursts of periodic oscillations during intermittency

correspond to the phase-synchronised epochs of periodic 𝑢′ and 𝑝′, and the aperiodic

epochs correspond to the desynchronised aperiodic 𝑢′ and 𝑝′.

1.4 OBJECTIVES OF THE WORK

The primary aim of the thesis is to investigate the transitions in turbulent thermoacoustic

and aeroacoustic systems. The current thesis discovers the underlying physics-based

mechanisms for the transitions observed. The specific objectives of this thesis are:

1. Perform experiments in different configurations of turbulent thermoacoustic and
aeroacoustic systems to obtain sudden transitions upon control parameter variation.

2. Characterize the dynamical states and the nature of the transitions when the control
parameter is varied in turbulent thermoacoustic and aeroacoustic systems.

3. Obtain a low-order thermoacoustic model to illustrate the transitions and the
dynamics observed in turbulent combustors.

4. Investigate the transitions in the aeroacoustic system during shifts in whistling
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frequency by performing experiments.

5. Investigate the dynamics of the aeroacoustic system under the purview of
synchronisation theory.

1.5 OVERVIEW OF THE THESIS

The methods and analysis used to study the turbulent fluid mechanical systems are

presented in Chapter 2. In this chapter, we present the derivation to arrive at the self-

excited harmonic oscillator used to represent the dynamics and transitions in turbulent

thermoacoustic systems. We then present the method of averaging to extract the dynamics

of the amplitude of the envelope from the stochastic second-order differential equation.

Subsequently, the theory of recurrence analysis used for nonlinear time series analysis is

introduced. The coupling between the hydrodynamics and acoustic field is studied using

synchronisation theory. Therefore, we give a brief introduction to synchronisation theory

and the methods to investigate the synchronisation phenomenon in this chapter.

Chapter 3 provides information on the experimental setups and the experimental

procedures used to study the transitions in thermoacoustic and aeroacoustic systems. We

conduct experiments in three different configurations of turbulent combustors and an

aeroacoustic setup.

In Chapter 4, the experimental observations of abrupt transitions via secondary

bifurcations are presented. We explain the effect of stochastic fluctuations on the nature

of the transition. Further, the stability of different dynamical states is visualized with the

help of a potential function. We also illustrate the dynamics of hysteresis using the

potential function.

In Chapter 5, we present the experimental observations for rapid continuous transitions,

referred to as canard explosions. We present the modifications for a Van der Pol oscillator

model to obtain significant steepening of the bifurcation regime to represent the transition
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having a canard explosion. We show that the transition occurs via a phenomenon of

large-amplitude bursting. Using experimental results and the model, we show that a

system parameter oscillates in correlation with the envelope of the acoustic pressure

fluctuations during bursting.

The experimental results for transitions in the aeroacoustic system are presented in Chapter

6. We describe the state of intermittency, LCO, and aperiodicity using recurrence theory in

this chapter. We further study the coupled dynamics of the velocity and acoustic pressure

fluctuations from the perspective of synchronisation theory. Finally, the conclusions of

the thesis and the scope for future work are summarized in Chapter 7.
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CHAPTER 2

METHODS AND ANALYSIS TO STUDY DYNAMICAL
SYSTEMS

2.1 MATHEMATICAL MODEL FOR TRANSITIONS IN THERMOACOUSTIC

SYSTEMS

In thermoacoustic systems, a change in the behaviour of oscillations of the system is

observed from stable operating conditions to thermoacoustic instability upon variation

in control parameters. The stable operating conditions consist of very low amplitude

aperiodic acoustic pressure fluctuations, and the state of thermoacoustic instability

(TAI) consists of limit cycle oscillations. From a broader perspective, this behaviour is

analogous to a simple self excited harmonic oscillator having a net effect of nonlinear

driving. Studying thermoacoustic systems in the form of self-excited harmonic oscillators

offers a simplified way to analyze the stability of the dynamical states.

In this study, we are concerned with modelling the dynamics of the acoustic pressure

amplitude of the combustor as a control parameter varies. The thermoacoustic system

considered here is one-dimensional, where the axial modes are excited. The effects

of mean flow and temperature gradient are neglected (Nicoud and Wieczorek, 2009;

Balasubramanian and Sujith, 2008b). The nonlinear acoustic terms are considered

insignificant as the pressure fluctuations with respect to the mean are negligible. Thus,

the dynamics of the energy release in terms of heat release rate and the acoustic field

fluctuations inside the combustion chamber is governed by the linearized momentum and

energy conservation equations (Balasubramanian and Sujith, 2008b), which are given as,

1
�̄�

𝜕𝑝′(𝑧, 𝑡)
𝜕𝑧

+ 𝜕𝑢′(𝑧, 𝑡)
𝜕𝑡

= 0, (2.1)

𝜕𝑝′(𝑧, 𝑡)
𝜕𝑡

+ 𝛾𝑝
𝜕𝑢′(𝑧, 𝑡)

𝜕𝑧
= (𝛾 − 1) ¤𝑄′(𝑧, 𝑡)𝛿(𝑧 − 𝑧 𝑓 ). (2.2)



Here, 𝑡 is time, 𝑧 is the distance along the axial direction of the duct, and 𝛾 is the specific

heat ratio. �̄� and 𝑝 indicate the mean density and pressure, while 𝑝′ and 𝑢′ are the

pressure and velocity fluctuations, respectively. We assume the chemical reaction zone,

comprising heat release rate fluctuations ¤𝑄′, to be of smaller volume majorly restricted

at a location 𝑧 𝑓 and is represented by a Dirac-delta (𝛿) function (McManus et al., 1993).

Equations (2.1) and (2.2) can be appropriately modified to obtain the wave equation in

an inhomogeneous form as (Lieuwen, 2021):

𝑐2 𝜕
2𝑝′(𝑧, 𝑡)
𝜕𝑧2 − 𝜕2𝑝′(𝑧, 𝑡)

𝜕𝑡2

= −(𝛾 − 1) 𝜕
¤𝑄′(𝑧, 𝑡)
𝜕𝑡

𝛿(𝑧 − 𝑧 𝑓 ),
(2.3)

where, 𝑐 =
√︁
𝛾𝑝/�̄� is the acoustic speed. An ordinary differential equation by simplifying

Eq. (2.3) using a Galerkin modal expansion is obtained (Lores and Zinn, 1973). 𝑢′ and 𝑝′

are rewritten in terms of a set of spatial basis functions (sines and cosines). The temporal

coefficients of the basis functions are 𝜂 and ¤𝜂, and are represented as:

𝑝′(𝑧, 𝑡) = 𝑝

𝑛∑︁
𝑗=1

¤𝜂 𝑗 (𝑡)
𝜔 𝑗

cos(𝑘 𝑗 𝑧) and

𝑢′(𝑧, 𝑡) = 𝑝

�̄�𝑐

𝑛∑︁
𝑗=1

𝜂 𝑗 (𝑡) sin(𝑘 𝑗 𝑧),
(2.4)

where 𝑗 represent the eigenmodes. The basis functions satisfy the acoustic boundary

conditions - i.e., 𝑢′ = 0 at the closed end and 𝑝′ = 0 at the open end of the duct. The

chosen basis functions are orthogonal in nature. These basis functions also form the

eigenmodes of the self-adjoint part of the linearized equations (Balasubramanian and

Sujith, 2008b). Here, for a given length of the combustor 𝐿, 𝑘 𝑗 is the wavenumber

(𝑘 𝑗 = (2 𝑗 − 1)𝜋/2𝐿). The wavenumber is related to the natural frequency as 𝜔 𝑗 = 𝑐𝑘 𝑗 .

After substituting for Eq. (2.4), Eq. (2.3) can be written as,

𝑛∑︁
𝑗=1

¥𝜂 𝑗 (𝑡)
𝜔 𝑗

cos (𝑘 𝑗 𝑧) +
𝛾𝑝

�̄�𝑐

𝑛∑︁
𝑗=1

𝜂 𝑗 (𝑡)𝑘 𝑗 cos(𝑘 𝑗 𝑧)

=
𝛾 − 1
𝑝

¤𝑄′𝛿(𝑧 − 𝑧 𝑓 ).
(2.5)
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By integrating Eq. (2.5) over the volume of the combustor, after computing the inner

product along each of the basis functions, one can obtain

¥𝜂 𝑗 (𝑡)
𝜔 𝑗

+ 𝑐𝑘 𝑗𝜂 𝑗 (𝑡) =
2(𝛾 − 1)

𝐿𝑝

∫ 𝐿

0
¤𝑄′𝛿(𝑧 − 𝑧 𝑓 ) cos(𝑘 𝑗 𝑧)d𝑧. (2.6)

Here, we choose the number of eigenmodes to be 𝑗 = 1, which is adequate for analysing

the characteristics of the transition discovered in the experiments conducted in the

current study. Further, the observed dynamics in combustors is a result of the nonlinear

interaction of the flame to the fluctuations in the acoustic field. Therefore, ¤𝑄′ is denoted

by a nonlinear function of 𝜂 and ¤𝜂. Thus, Eq. (2.6) simplifies to a harmonic oscillator,

expressed as

¥𝜂 + 𝜔2𝜂 = 𝑓 (𝜂, ¤𝜂), (2.7)

where, 𝑓 (𝜂, ¤𝜂) = 𝑓 ( ¤𝑄′) − 𝛼 ¤𝜂 is the nonlinear driving function. An additional term 𝛼 ¤𝜂

is included to account for the acoustic damping, where 𝛼 is the coefficient of damping

(Noiray, 2017). Thus, the source term 𝑓 (𝜂, ¤𝜂) represents the nonlinear damping and

driving behaviour of the oscillator. Further, 𝑓 (𝜂, ¤𝜂) can be expanded with nonlinear

terms such that Eq. (2.7) represents a Hopf bifurcation to thermoacoustic oscillations

(Bonciolini et al., 2021). The modified form of Eq. (2.7) is given as,

¥𝜂 +
(
𝜇2𝜂

2 − 𝜇0

)
¤𝜂 + 𝜔2𝜂 = 0, (2.8)

where 𝜇0 is the control parameter and 𝜇2 is the coefficient of the second order nonlinear

term. Equation (2.8) also represents the Van der Pol oscillator, which is a paradigm for

systems exhibiting limit cycle oscillations (Minorsky, 1962). When 𝜇2 is positive, one

can obtain a stable limit cycle branch denoting a supercritical Hopf bifurcation (refer to

Fig. 2.1a). When 𝜇2 is negative, one obtains an unstable subcritical limit cycle branch

(refer to Fig. 2.1b). The nonlinear coefficients associated with the driving term ¤𝜂 in

Eq. (2.8) can be augmented with higher order nonlinear coefficients to produce multiple

limit cycle branches (Ananthkrishnan et al., 1998). This augmentation helps represent

the multiple high amplitude limit cycle oscillations (LCO) in thermoacoustic systems

25



Figure 2.1: Representation of the types of bifurcation obtained by augmenting the driving
term ¤𝜂 of Eq. (2.9) with the higher order nonlinear terms. (a) Supercritical
Hopf bifurcation with a single stable branch of LCO. (b) Subcritical Hopf
bifurcation with a single unstable LCO branch. (c) Subcritical Hopf
bifurcation to a stable LCO branch. (d) Secondary bifurcation depicting a
supercritical followed by a sudden discontinuous secondary transition to a
large amplitude stable LCO. Open circles represent the unstable solutions,
and the solid circles represent the stable solutions. This figure is replicated
with approval from Ananthkrishnan et al. (1998)

(Bhavi et al., 2023). Therefore, we modify Eq. (2.8) as,

¥𝜂 +
(
𝜇6𝜂

6 + 𝜇4𝜂
4 + 𝜇2𝜂

2
)
¤𝜂 − 𝜇0 ¤𝜂 + 𝜔2𝜂 = 0, (2.9)

where 𝜇4 and 𝜇6 are the coefficients of the higher order nonlinear terms. The constants

𝜇0, 𝜇2, 𝜇4, and 𝜇6 are model parameters where 𝜇𝑜 is the linear driving term (Noiray

and Schuermans, 2013). However, please note that the model reproduces experimental

results only in a qualitative sense. This limitation arises because the heat release rate

expression employed in the model does not accurately reflect the physical conditions

present in the experiments. Specifically, the model’s heat release formulation does not

represent the actual heat transfer dynamics from the turbulent flame of the combustors.
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Additionally, the model neglects the influence of mean flow, which further contributes to

quantitative discrepancies between simulation and experimental observations. As a result,

the parameter values required in the model to replicate the experimental dynamics differ

significantly from those used in the experiments. Despite these simplifications, the chosen

expression for the nonlinear terms in Eq. (2.9) captures the essential characteristics

of abrupt transitions in a thermoacoustic system. Past studies have reproduced the

subcritical nature of the system in the model by introducing the third- and fifth-order

nonlinear terms for heat release rate expression in place of a more generalized nonlinear

function (Noiray and Schuermans, 2013; Gopalakrishnan et al., 2016; Noiray, 2017).

The higher-order nonlinear terms are selected to ensure the model exhibits the bistable

behaviour observed in the experiments Ananthkrishnan et al. (1998). Notably, the form

of the heat release rate used here aligns with those adopted in earlier works by Clavin

et al. (1994); Campa and Juniper (2012).

By fixing 𝜇2 = −1, 𝜇4 > 0 and 𝜇6 = 0, one can obtain an unstable LCO branch followed

by a stable LCO branch representing a subcritical Hopf bifurcation (Fig. 2.1c). Similarly,

by fixing 𝜇2 > 0, 𝜇4 < 0 and 𝜇6 > 0, one obtains a secondary bifurcation as shown in

Fig. 2.1d (Ananthkrishnan et al., 1998). Thus, from Fig. 2.1, note that the coefficients 𝜇2,

𝜇4 and 𝜇6 govern the stability and the amplitude of the LCO branches in the bifurcation

curve. Further, in order to take the effects of turbulence into account, one can add

additive Gaussian white noise, and Eq. (2.9) is modified as,

¥𝜂 +
(
𝜇6𝜂

6 + 𝜇4𝜂
4 + 𝜇2𝜂

2 − 𝜇0

)
¤𝜂 + 𝜔2𝜂 + 𝜉 = 0, (2.10)

where 𝜉 is delta correlated in time: ⟨𝜉 (𝑡)𝜉 (𝑡 + 𝜏)⟩ = Γ𝛿(𝜏), where Γ is the noise intensity.

The symbol ⟨.⟩ represents the ensemble of realizations of the stochastic process. Thus,

the overall dynamics is governed by the second-order stochastic differential equation.
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2.1.1 Derivation of slow flow amplitude and phase evolution equations

The stability of the dynamical states for the stochastic differential equation (2.10) can be

approximately analyzed using linear stability analysis. In linear stability analysis, the

system is perturbed by infinitesimally small perturbations at a fixed point state of the

system, and then the perturbations are allowed to evolve in time (Strogatz, 2018; Sujith

and Pawar, 2021). If the perturbations grow, then the fixed point state is unstable. If the

perturbations decay to zero, then the fixed point state is unstable. Thus, linear stability

analysis is a useful tool for analyzing the stability of the state of the system. However,

Eq. (2.10) is a second-order differential equation which has limit cycle solutions and

is a limiting condition for linear stability analysis. Therefore, we utilize the method

of averaging to extract the amplitude-envelope of the oscillations of the system. We

proceed with assuming the dynamics, represented by white noise, is a stationary process

in our derivation. Using Krylov-Bogoliubov (KB) method of decomposition (Krylov and

Bogoliubov, 2016; Balanov et al., 2009), the general solution for the Eq. (2.10) is of the

form

𝜂(𝑡) = 𝐴(𝑡) cos(𝜔𝑡 +Ω(𝑡)), (2.11)

here, 𝐴(𝑡) and Ω(𝑡) are of slow time scale and 𝜔 is of fast time scale. The first derivative

¤𝜂 for the general solution Eq. (2.11) is given as

¤𝜂(𝑡) = ¤𝐴(𝑡) cos [𝜔𝑡 +Ω(𝑡)]−𝐴(𝑡)𝜔 sin [𝜔𝑡 +Ω(𝑡)]−𝐴(𝑡) ¤Ω(𝑡) sin [𝜔𝑡 +Ω(𝑡)], (2.12)

By representing the general solution for 𝜂(𝑡) in the form of Eq. (2.11) we are considering

that 𝐴(𝑡) and Ω(𝑡) are slow variables in comparison to the fast oscillations of the system

with frequency 𝜔, i.e. ¤𝐴(𝑡) ≪ 𝐴(𝑡)𝜔 and ¤Ω(𝑡) ≪ 𝜔. Therefore, we further set an

additional condition that the derivative of 𝜂(𝑡) in Eq. (2.12) is a simple expression of the

form

¤𝜂 = −𝐴(𝑡)𝜔 sin [𝜔𝑡 +Ω(𝑡)] (2.13)

28



which would imply

¤𝐴(𝑡) cos [𝜔𝑡 +Ω(𝑡)] − 𝐴(𝑡) ¤Ω(𝑡) sin [𝜔𝑡 +Ω(𝑡)] = 0. (2.14)

Writing the general solution in exponential form, one can get

𝜂 = 𝐴 cos (𝜔𝑡 +Ω) = 𝐴

(
ei(𝜔𝑡+Ω) + e−i(𝜔𝑡+Ω)

2

)
=
𝑎ei𝜔𝑡 + 𝑎∗e−i𝜔𝑡

2
, (2.15)

where 𝑎 = 𝐴eiΩ and 𝑎∗ = 𝐴e−iΩ. In a similar manner we can write Eq. (2.13), Eq. (2.14)

and ¥𝜂 as

¤𝜂 =
i𝜔(𝑎ei𝜔𝑡 − 𝑎∗e−i𝜔𝑡)

2
, (2.16)

¤𝑎𝑒𝑖𝜔𝑡 + ¤𝑎∗e−i𝜔𝑡 = 0, (2.17)

¥𝜂 = i𝜔 ¤𝑎ei𝜔𝑡 − 𝜔2

2
(𝑎ei𝜔𝑡 + 𝑎∗e−i𝜔𝑡), (2.18)

respectively, where ¤𝑎 = ¤𝐴eiΩ + 𝑖𝐴 ¤ΩeiΩ and ¤𝑎∗ = ¤𝐴e−iΩ − i𝐴 ¤Ωe−iΩ. Substituting for 𝜂, ¤𝜂

and ¥𝜂 in Eq. (2.10) and letting 𝑎ei𝜔𝑡 + 𝑎∗e−i𝜔𝑡 = 𝛽 we get

i𝜔 ¤𝑎ei𝜔𝑡−𝜔
2

2
𝛽+

( 𝜇6
64

𝛽6 + 𝜇4
16

𝛽4 + 𝜇2
4
𝛽2 − 𝜇0

)
× i𝜔

2
(𝑎ei𝜔𝑡−𝑎∗e−i𝜔𝑡)+𝜔

2

2
𝛽+𝜉 = 0, (2.19)

where 𝑎, ¤𝑎 and 𝑎∗ are slow functions of time as compared to e(±𝑛𝜔𝑡) , 𝑛 being an integer.

We further simplify Eq. (2.19) by expanding 𝛽6, 𝛽4 and 𝛽2 using binomial expansion,

which is not shown here in the interest of space. In order to eliminate the terms associated

with the fast time scale, we divide Eq. (2.19) with i𝜔ei𝜔𝑡 and average the whole equation

over the time period, 𝑇 = 2𝜋/𝜔, of fast oscillations. The terms having even integers

in e(±𝑛𝜔𝑡) will be zero after averaging. Substituting for 𝑎 = 𝐴eiΩ, 𝑎∗ = 𝐴e−iΩ and

𝑎𝑎∗ = |𝐴|2 we get

¤𝐴 + i𝐴 ¤Ω − 𝜇0
2
𝐴 + 𝜇2

8
𝐴3 + 𝜇4

16
𝐴5 + 5𝜇6

128
𝐴7 − i

𝜉

𝜔
𝑒−i(𝜔𝑡+Ω) = 0. (2.20)

Separating Eq. (2.20) into real and imaginary parts, we have

¤𝐴 − 𝜇0
2
𝐴 + 𝜇2

8
𝐴3 + 𝜇4

16
𝐴5 + 5𝜇6

128
𝐴7 − 𝜉

𝜔
sin (𝜔𝑡 +Ω) = 0, (2.21)

29



𝐴 ¤Ω − 𝜉

𝜔𝐴
cos (𝜔𝑡 +Ω) = 0. (2.22)

Equations (2.21) and (2.22) are the governing equations for the evolution of slowly

varying amplitude and phase, respectively. The amplitude and phase equation can be

explicitly written as,

¤𝐴 = −
(
−𝜇0

2
𝐴 + 𝜇2

8
𝐴3 + 𝜇4

16
𝐴5 + 5𝜇6

128
𝐴7

)
+ 𝜉

𝜔
sin (𝜔𝑡 +Ω),

¤Ω =
𝜉

𝜔𝐴
cos (𝜔𝑡 +Ω)

(2.23)

2.1.2 Stochastic averaging of the slow flow equations

When 𝜉 = 0, Eq. (2.23) represents the deterministic evolution of the envelope-amplitude

of the oscillations of the system. In order to simplify the stochastic term 𝜉𝑒−𝑖𝜔𝑡 , we

make use of the procedure used by Stratonovich (1963). The method involves the use

of Fokker-Planck (FP) equation that describes the time evolution of the joint PDF of

amplitude P(𝐴) and P(Ω), simplification of the FP equation and reconstructing the

stochastic differential equations that correspond to the simplified FP equation. For

simplicity, if we consider a generic form representing the evolution of the amplitude and

phase as,

¤𝐴 = 𝐺𝐴 (𝐴,Ω) + 𝐻𝐴 (𝐴,Ω, 𝜉) = 𝐹𝐴,

¤Ω = 𝐺Ω(𝐴,Ω) + 𝐻Ω(𝐴,Ω, 𝜉) = 𝐹Ω,

(2.24)

here from Eq. (2.23) we have,

𝐺𝐴 = −
(
−𝜇0

2
𝐴 + 𝜇2

8
𝐴3 + 𝜇4

16
𝐴5 + 5𝜇6

128
𝐴7

)
,

𝐻𝐴 =
𝜉

𝜔
sin (𝜔𝑡 +Ω),

𝐺Ω = 0,

𝐻Ω =
𝜉

𝜔𝐴
cos (𝜔𝑡 +Ω).

(2.25)

𝐹𝐴 and 𝐹Ω are the stochastic functions of amplitude and phase. Following Stratonovich

(1963) and Balanov et al. (2009), we write the FP equation describing the joint probability
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density function P(𝐴,Ω, 𝑡) as,

𝜕P
𝜕𝑡

= − 𝜕

𝜕𝐴

{(
⟨𝐹𝐴⟩ +

∫ 0

𝑡0−𝑡
𝜓

[
𝜕𝐹𝐴

𝜕𝐴
, 𝐹𝐴𝜏

]
d𝜏 +

∫ 0

𝑡0−𝑡
𝜓

[
𝜕𝐹𝐴

𝜕Ω
, 𝐹Ω𝜏

]
d𝜏

)
P
}

− 𝜕

𝜕Ω

{(
⟨𝐹Ω⟩ +

∫ 0

𝑡0−𝑡
𝜓

[
𝜕𝐹Ω

𝜕𝐴
, 𝐹𝐴𝜏

]
d𝜏 +

∫ 0

𝑡0−𝑡
𝜓

[
𝜕𝐹Ω

𝜕Ω
, 𝐹Ω𝜏

]
d𝜏

)
P
}

+ 𝜕2

𝜕𝐴2

{(∫ 0

𝑡0−𝑡
𝜓 [𝐹𝐴, 𝐹𝐴𝜏] d𝜏

)
P
}
+ 𝜕2

𝜕𝐴𝜕Ω

{(∫ 0

𝑡0−𝑡
𝜓 [𝐹𝐴, 𝐹Ω𝜏] d𝜏

)
P
}

+ 𝜕2

𝜕Ω𝜕𝐴

{(∫ 0

𝑡0−𝑡
𝜓 [𝐹Ω, 𝐹𝐴𝜏] d𝜏

)
P
}
+ 𝜕2

𝜕Ω2

{(∫ 0

𝑡0−𝑡
𝜓 [𝐹Ω, 𝐹Ω𝜏] d𝜏

)
P
}
.

(2.26)

Here, 𝜓 [𝑋,𝑌𝜏] is the cross-covariance of the two stochastic process 𝑋 and 𝑌𝑡 at time

instants 𝑡 and 𝑡 + 𝜏, respectively. The symbol ⟨.⟩ represents the ensemble of realizations

of the stochastic process. The covariance terms that appear in Eq. (2.26) can be simplified

as follows. To begin with, we consider the first covariance term

𝜓

[
𝜕𝐹𝐴

𝜕𝐴
, 𝐹𝐴𝜏

]
=

〈
𝜕𝐹𝐴

𝜕𝐴
× 𝐹𝐴𝜏

〉
−
〈
𝜕𝐹𝐴

𝜕𝐴

〉
⟨𝐹𝐴𝜏⟩

=

〈
𝜕 (𝐺𝐴 + 𝐻𝐴)

𝜕𝐴
× (𝐺𝐴𝜏 + 𝐻𝐴𝜏)

〉
−
〈
𝜕 (𝐺𝐴 + 𝐻𝐴)

𝜕𝐴

〉
⟨𝐺𝐴𝜏 + 𝐻𝐴𝜏⟩ .

(2.27)

We note that 𝐺𝐴 and 𝜕𝐺𝐴/𝜕𝐴 are deterministic functions of time, and they remain the

same for any realization of a stochastic process 𝜉. Hence, their ensemble averages are

given by

⟨𝐺𝐴⟩ = 𝐺𝐴,

〈
𝜕𝐺𝐴

𝜕𝐴

〉
=
𝜕𝐺𝐴

𝜕𝐴
. (2.28)

Considering Eq. (2.28) and the fact that the ensemble average of a product of a

deterministic and a stochastic functions can be written as the product of the deterministic

function and the average of the stochastic function. Eq. (2.27) can be written as

𝜓

[
𝜕𝐹𝐴

𝜕𝐴
, 𝐹𝐴𝜏

]
=

〈
𝜕𝐻𝐴

𝜕𝐴
× 𝐻𝐴𝜏

〉
= ⟨0 × 𝐻𝐴𝜏⟩ = 0. (2.29)
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We can also calculate the averages and covariances of other terms in Eq. (2.26) as

𝜓

[
𝜕𝐹𝐴

𝜕Ω
, 𝐹Ω𝜏

]
=

〈
𝜕𝐻𝐴

𝜕Ω
× 𝐻Ω𝜏

〉
=

〈
𝜉

𝜔
cos (𝜔𝑡 +Ω) ×

(
𝜉𝜏

𝜔𝐴𝜏

cos (𝜔𝑡 + 𝜔𝜏 +Ω𝜏)
)〉

= ⟨𝜉𝜉𝜏⟩
1

𝐴𝜏𝜔
2 cos (𝜔𝑡 +Ω) cos (𝜔𝑡 + 𝜔𝜏 +Ω𝜏) .

(2.30)

Now, we evaluate an integral of 𝜓 [𝜕𝐹𝐴/𝜕Ω, 𝐹Ω𝜏] over 𝜏 from (𝑡0 − 𝑡) to 0 where 𝑡0 is

some initial time moment from which we start to consider the process. We set 𝑡0 to minus

infinity so as to consider an established process. Since we have already considered the

noise 𝜉 to be delta-correlated, the slow variables can be treated as constant in the time

interval, implying 𝐴𝜏 = 𝐴 and Ω𝜏 = Ω. After simplifying the trigonometric terms in

Eq. (2.30) we can write the integral as∫ 0

−∞
𝜓

[
𝜕𝐹𝐴

𝜕Ω
, 𝐹Ω𝜏

]
d𝜏 =

1 + cos(2𝜔𝑡 + 2Ω)
2𝐴𝜔2

∫ 0

−∞
⟨𝜉𝜉𝜏⟩ cos(𝜔𝜏)d𝜏

− sin(2𝜔𝑡 + 2Ω)
2𝐴𝜔2

∫ 0

−∞
⟨𝜉𝜉𝜏⟩ sin(𝜔𝜏)d𝜏.

(2.31)

We have initially assumed that the noise we are considering is a stationary process,

then its correlation function ⟨𝜉𝜉𝜏⟩ depends only on 𝜏. According to Wiener-Khintchine

theorem (Coffey and Kalmykov, 2012), the autocorrelation of the stationary process is

the Fourier transform of the power spectral density Γ. The first integral on the right hand

side of the Eq. (2.31) is half of the Fourier transform (FT) of the correlation function

⟨𝜉𝜉𝜏⟩ which is equal to Γ/2. The second integral is the imaginary part of the FT and is

equal to zero. Hence, Eq. (2.31) simplifies to∫ 0

−∞
𝜓

[
𝜕𝐹𝐴

𝜕Ω
, 𝐹Ω𝜏

]
d𝜏 =

Γ

4𝐴𝜔2 (1 + cos(2𝜔𝑡 + 2Ω)). (2.32)

We can again apply the Krylov-Bogoliubov method of averaging to Eq. (2.32) by taking

𝐴 and Ω as slowly varying functions of time to obtain∫ 0

−∞
𝜓

[
𝜕𝐹𝐴

𝜕Ω
, 𝐹Ω𝜏

]
d𝜏 =

Γ

4𝐴𝜔2 . (2.33)
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In a similar manner, we can simplify the other terms of the Eq. (2.26) as

𝜓

[
𝜕𝐹Ω

𝜕𝐴
, 𝐹𝐴𝜏

]
=

〈
𝜕𝐻Ω

𝜕𝐴
× 𝐻𝐴𝜏

〉
= 0, (2.34)

𝜓

[
𝜕𝐹Ω

𝜕Ω
, 𝐹Ω𝜏

]
=

〈
𝜕𝐻Ω

𝜕Ω
× 𝐻Ω𝜏

〉
= 0, (2.35)

𝜓 [𝐹𝐴, 𝐹𝐴𝜏] = ⟨𝐻𝐴𝐻𝐴𝜏⟩ =
Γ

4𝜔2 , (2.36)

𝜓 [𝐹𝐴, 𝐹Ω𝜏] = ⟨𝐻𝐴𝐻Ω𝜏⟩ = 0, (2.37)

𝜓 [𝐹Ω, 𝐹𝐴𝜏] = ⟨𝐻Ω𝐻𝐴𝜏⟩ = 0, (2.38)

𝜓 [𝐹Ω, 𝐹Ω𝜏] = ⟨𝐻Ω𝐻Ω𝜏⟩ =
Γ

4, 𝜔2𝐴2 (2.39)

In view of the above, Eq. (2.26) can be rewritten as

𝜕P
𝜕𝑡

=
𝜕

𝜕𝐴

{(
𝐺𝐴 +

∫ 0

−∞
𝜓

〈
𝜕𝐻𝐴

𝜕𝐴
, 𝐻𝐴𝜏

〉
d𝜏 +

∫ 0

−∞
𝜓

〈
𝜕𝐻𝐴

𝜕Ω
, 𝐻Ω𝜏

〉
d𝜏

)
P
}

− 𝜕

𝜕Ω

{(
𝐺Ω +

∫ 0

−∞
𝜓

〈
𝜕𝐻Ω

𝜕𝐴
, 𝐻𝐴𝜏

〉
d𝜏 +

∫ 0

−∞
𝜓

〈
𝜕𝐻Ω

𝜕Ω
, 𝐻Ω𝜏

〉
d𝜏

)
P
}

+ 𝜕2

𝜕𝐴2

{(∫ 0

−∞
𝜓 ⟨𝐻𝐴, 𝐻𝐴𝜏⟩ d𝜏

)
P
}
+ 𝜕2

𝜕𝐴𝜕Ω

{(∫ 0

−∞
𝜓 ⟨𝐻𝐴, 𝐻Ω𝜏⟩ d𝜏

)
P
}

+ 𝜕2

𝜕Ω𝜕𝐴

{(∫ 0

−∞
𝜓 ⟨𝐻Ω, 𝐻𝐴𝜏⟩ d𝜏

)
P
}
+ 𝜕2

𝜕Ω2

{(∫ 0

−∞
𝜓 ⟨𝐻Ω, 𝐻Ω𝜏⟩ d𝜏

)
P
}
.

(2.40)

Substituting all the terms from Eq. (2.33)-(2.39) into Eq. (2.40) we obtain

𝜕P
𝜕𝑡

= − 𝜕

𝜕𝐴

{(
𝐺𝐴 + Γ

4𝐴𝜔2

)
P
}
− 𝜕

𝜕Ω
{𝐺ΩP}

+ 𝜕2

𝜕𝐴2

{
Γ

4𝜔2P
}
+ 𝜕2

𝜕Ω2

{
Γ

4𝜔2𝐴2P
}
.

(2.41)

Equation (2.41) is a Fokker-Planck equation which is simplified by means of averaging

over the period of fast time scale 𝑇 = 2𝜋/𝜔. Now, we would like to reconstruct stochastic

equations in the form

¤𝐴 = 𝐺𝐴 (𝐴,Ω) + 𝐻𝐴 (𝐴,Ω, 𝜉1), (2.42)

¤Ω = 𝐺Ω(𝐴,Ω) + 𝐻Ω(𝐴,Ω, 𝜉2), (2.43)

that would result in the simplified FP Eq. (2.41), if one wanted to construct it by following

the Eq. (2.26). We find the expressions for 𝐺𝐴, 𝐻𝐴, 𝐺Ω and 𝐻Ω by comparing separate
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terms of Eq. (2.41) with the corresponding terms of Eq. (2.40), considering that all the

functions in the latter would be marked by tildes. We observe that∫ 0

−∞

〈
𝐻𝐴

˜𝐻Ω𝜏

〉
𝑑𝜏 =

∫ 0

−∞

〈
𝐻Ω

˜𝐻𝐴𝜏

〉
d𝜏 = 0, (2.44)

which can be true if the process 𝐻𝐴 and 𝐻Ω are not correlated. If Eq. (2.44) is true, then

the two pairs of processes 𝜕𝐻𝐴/𝜕Ω and 𝐻Ω, and 𝜕𝐻Ω/𝜕𝐴 and 𝐻𝐴 are not correlated

that is ∫ 0

−∞

〈
𝜕𝐻𝐴

𝜕Ω
× ˜𝐻Ω𝜏

〉
d𝜏 =

∫ 0

−∞

〈
𝜕𝐻Ω

𝜕𝐴
× ˜𝐻𝐴𝜏

〉
d𝜏 = 0. (2.45)

Therefore we have

𝐺𝐴 +
∫ 0

−∞
𝜓

〈
𝜕𝐻𝐴

𝜕𝐴
× ˜𝐻𝐴𝜏

〉
d𝜏 = 𝐺𝐴 + Γ

4𝐴𝜔2 , (2.46)

𝐺Ω +
∫ 0

−∞
𝜓

〈
𝜕𝐻Ω

𝜕Ω
× ˜𝐻Ω𝜏

〉
d𝜏 = 𝐺Ω. (2.47)

Next we consider ∫ 0

−∞
𝜓
〈
𝐻𝐴 × ˜𝐻𝐴𝜏

〉
d𝜏 =

Γ

4𝜔2 , (2.48)

which is an expression independent of 𝐴, and therefore 𝜕𝐻𝐴/𝜕𝐴 = 0. This leads to the

disappearance of the integral in Eq. (2.46), and the final expression for 𝐺𝐴 is

𝐺𝐴 = 𝐺𝐴 + Γ

4𝐴𝜔2 . (2.49)

Next, we consider ∫ 0

−∞
𝜓
〈
𝐻Ω × ˜𝐻Ω𝜏

〉
d𝜏 =

Γ

4𝜔2𝐴2 . (2.50)

Here, the integral depends on 𝐴, but not on Ω, therefore the term involving 𝜕/𝜕Ω

vanishes, and 𝐺Ω is given as

𝐺Ω = 𝐺Ω. (2.51)

Equation (2.48) and (2.50) are valid only if 𝐻𝐴 and 𝐻Ω can be expressed as

𝐻𝐴 =

√
Γ

2𝜔
𝜉1 and 𝐻Ω =

√
Γ

2𝜔𝐴
𝜉2, (2.52)
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Where 𝜉1 and 𝜉2 represent a delta-correlated noise with zero mean and unity variance. In

order for 𝐻𝐴 and 𝐻Ω to be uncorrelated, we need that 𝜉1 and 𝜉2 are uncorrelated, which

is given as

⟨𝜉1(𝑡)𝜉2(𝑡 + 𝜏)⟩ = 0. (2.53)

Finally, we can write the simplified stochastic differential Eq. (2.23) as

¤𝐴 = −
(
−𝜇0

2
𝐴 + 𝜇2

8
𝐴3 + 𝜇4

16
𝐴5 + 5𝜇6

128
𝐴7

)
+ Γ

4𝐴𝜔2 +
√
Γ

2𝜔
𝜉1,

¤Ω =

√
Γ

2𝜔𝐴
𝜉2.

(2.54)

The objective of the reconstruction is to obtain the autonomous evolution equation for

the slowly varying amplitude and the phase of the system. Here, the terms for the newly

reconstructed form are obtained by equating terms of the FP equations for Eq. (2.42

& 2.43) and Eq. (2.24). We see that the final simplified form (Eq. 2.54) is helpful for

stability analysis. At the beginning of the reconstructed form, the noise terms are taken

as 𝜉1 & 𝜉2, and upon equating the corresponding terms in FP equations (for Eq. 2.42 &

2.43 and Eq. 2.24), they turned out to be uncorrelated. Therefore, the terms 𝐻𝐴 and 𝐻𝜙

are also uncorrelated. However, note that the reconstructed equations for amplitude 𝐴

and phase 𝜙 are obtained in such a way that the joint probability density distribution of

the original system and the reconstructed equation remain the same. Thus, despite the

uncorrelated terms of 𝐻𝐴 and 𝐻𝜙, the equivalent nature of the reconstructed equations

with the original system is ensured using the FP equation. Note that for a deterministic

system (𝜉 = 0), the evolution of the phase is zero ( ¤Ω = 0), and now with the addition of

noise, the phase drifts. Further, we note that the evolution of the amplitude envelope in

Eq. (2.54) is a one-dimensional first-order differential equation, which can be analyzed

using linear stability analysis. In further chapters, we utilize this method of stochastic

averaging to illustrate the conditions for abrupt transitions.
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2.2 RECURRENCE ANALYSIS

The behaviour of a dynamical system is often studied by analysing the evolution of

the trajectory of the state variables (Strogatz, 2018). For instance, the behaviour of a

pendulum can be investigated by visualizing the velocity of the pendulum as a function of

displacement. The abstract graph, the evolution of state variables so obtained, is referred

to as phase space trajectory. In order to effectively visualize this phase space trajectory,

recurrence theory is used (Marwan and Kurths, 2002). A trajectory is said to be recurring

at a location in phase space if it revisits the neighbourhood of the considered location

(Eckmann et al., 2017). A recurrence plot (RP) is constructed based on the recurrence

matrix to visualize the recurrence of the system in its phase space. In this study, we use

time delay embedding (Takens, 1981) to reconstruct the phase space trajectory from the

signals measured during the experiments. The uniform delay embedding with a time

delay 𝜏 and embedding dimension 𝐷 is used to reconstruct the trajectory of the phase

space. The value of 𝜏 is computed from the function of average mutual information

(AMI) (Fraser and Swinney, 1986); the value of 𝜏 at the first minimum of AMI is

considered as the optimum 𝜏. The optimum dimension 𝐷 is computed using the false

nearest neighbourhood (FNN) method (Kennel et al., 1992). Here, the delayed vector

can be written as,

X𝑖 = [𝑥𝑖, 𝑥𝑖+𝜏, 𝑥𝑖+2𝜏 ... 𝑥𝑖+(𝐷−1)𝜏] . (2.55)

Here, 𝑖 is varied from 1 to 𝑁 − (𝐷 − 1)𝜏, where 𝑁 is the number of data points. To

compute the recurrence matrix, initially, we compute the distance between the location

𝑖 and all the other locations of the trajectory in phase portrait. Further, we choose a

distance threshold 𝜖 and consider only those points to compute the recurrence matrix

whose Euclidean distance is less than the threshold 𝜖 . The threshold 𝜖 can be chosen such

that the number of neighbouring locations is a small part of the total span of the attractor

or choose a value such that each point has a fixed number of neighbours (Marwan, 2011).
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The equation for calculating the recurrence matrix 𝑅𝑖 𝑗 is provided as,

𝑅𝑖 𝑗 = Θ
(
𝜖 −

X𝑖 − X 𝑗

) , (2.56)

where Θ is the Heaviside step function. If the Euclidean distance
X𝑖 − X 𝑗

 is less than

the threshold 𝜖 , then the element of the matrix 𝑅𝑖 𝑗 is equal to one, else 𝑅𝑖 𝑗 is equal to

zero. Entry 1 in the recurrence matrix corresponds to a recurrent state, which implies

that the trajectory is revisiting its neighbourhood. Thus, several distinct patterns can be

observed based on the type of dynamical state (Marwan and Kurths, 2002). For instance,

Fig. 2.2 represents the different patterns observed in the recurrence plot during the state

of chaos (aperiodic oscillations), intermittency and limit cycle oscillations. For periodic

dynamics, the recurrence plot consists of equipaced diagonal lines. The distance between

the diagonal lines represents the time period of the oscillations. Furthermore, for the

dynamical states such as quasi-periodic oscillations, the distance between the diagonal

lines varies (Marwan and Kurths, 2002). Thus, recurrence plots help in gaining useful

insights into many dynamical states exhibited by a system.

2.2.1 Recurrence quantification analysis (RQA)

In order to quantify the changes in dynamical states, we extract information from the

topology of the recurrence plot using recurrence quantification measures. These measures

are based on the statistics of the distribution of the points in the recurrence plots. Several

RQA measures have been developed based on the type of insights required to study the

dynamical systems (Marwan and Kurths, 2002). In this study, we use recurrence rate

(𝑅𝑅) and determinism (𝐷𝐸𝑇) measures to illustrate the dynamics of an aeroacoustic

system.
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Figure 2.2: Representation of the patterns from the recurrence matrix for the states of
(a) chaos, (b) intermittency and (c) LCO. This figure is reproduced with
permission from Nair et al. (2014), J. Fluid Mech. 756, 470–487 (2014),
published by Cambridge University Press.
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Recurrence rate 𝑅𝑅

The recurrence rate is a measure of the density of black points, i.e., the points that recur

in the RP (Marwan et al., 2007). The equation for 𝑅𝑅 is given as,

𝑅𝑅(𝜖) = 1
𝑁2

𝑁∑︁
𝑖, 𝑗=1

𝑅𝑖, 𝑗 , (𝜖). (2.57)

Here, 𝑁 is the overall number of points in the trajectory. 𝑅𝑅 attains the maximum value

of 1 when the points in the phase space trajectory are recurring. For a clean limit cycle

oscillations, the value of 𝑅𝑅 is near 1. In contrast, for an aperiodic signal, the points in

the recurrence plot are sparsely spaced, having a very low value of 𝑅𝑅 ≈ 0.

Determinism 𝐷𝐸𝑇

Determinism 𝐷𝐸𝑇 quantifies the periodic dynamics of the system and is given as,

𝐷𝐸𝑇 =

∑𝑁
𝑙=𝑙𝑚𝑖𝑛

𝑙𝐹 (𝑙)∑𝑁
𝑙=1 𝑙𝐹 (𝑙)

, (2.58)

where 𝐹 (𝑙) is the distribution of the length of the diagonal lines in the recurrence plot.

𝐷𝐸𝑇 represents the fraction of recurrence points in the RP that forms the diagonal lines.

For clean limit cycle oscillations, the value of 𝐷𝐸𝑇 is equal to 1. DET is helpful in

quantifying the difference between the periodic and quasi-periodic dynamics.

2.3 SYNCHRONISATION ANALYSIS

The phenomenon where the rhythm of the subsystems matches upon coupling is referred

to as synchronisation. In 17th century, Christiaan Huygens discovered the universal

phenomenon of synchronisation when he observed that pendulum clocks hung on a wall

synchronised their oscillations (Huygens, 1665; Pikovsky et al., 2003). In the following

years, this phenomenon of synchronisation is reported in various domains, such as

chemistry (Schreiber and Marek, 1982), biology (Glass, 2001), ecology (Blasius et al.,

1999), and engineering (Roy and Thornburg Jr, 1994; Heagy et al., 1994; Pawar et al.,

2017). Synchronisation among the oscillators is generally confirmed by the locking of
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frequency (or phase) of the oscillators. The coupling strength between the oscillators is

an important parameter that decides the arrival of two oscillators to a state where they

have constant phase differences.

The phenomenon of synchronisation can be observed in both periodic (Blekhman et al.,

1995) and chaotic oscillators (Boccaletti et al., 2002). Initially, desynchronised coupled

oscillators that exhibit chaotic oscillations can enter into the synchronised state of chaotic

oscillations. Such chaotic synchronisation occurs by means of variation in coupling

strength (Boccaletti et al., 2002), or feedback (Wang et al., 2001). However, the possibility

of the simultaneous existence of different coupling mechanisms makes it difficult to

identify the influence of individual mechanisms on the dynamics of the system.

The features of synchronisation have been observed in complex fluid mechanical systems

as well (Zdravkovich, 1982; Gunnoo et al., 2016). When a bluff body is placed against

the fluid flow, vortices are shed in its wake region. The shedding vortex perturbs the bluff

body, which in turn affects the shedding. When the natural frequency of the bluff body

oscillation is near the shedding frequency of the vortex, the vortex shedding frequency

locks with the bluff body oscillations. The mutual interactions between the flow and

the bluff body during the lock-in control the shedding patterns of large-scale structures

(Griffin and Ramberg, 1974; Blevins, 1985; Williamson and Roshko, 1988; Griffin

and Hall, 1991). The synchronisation phenomenon is also reported in thermoacoustic

systems (Pawar et al., 2017; Godavarthi et al., 2018; Kasthuri et al., 2022). Here the

synchronisation between the unsteady heat release rate and the chamber acoustics leads to

the state of self-sustained oscillations, referred to as thermoacoustic instability. Turbulent

flow systems can also be regarded as complex systems (Pavithran et al., 2020). Complex

systems consist of subsystems that interact with each other, giving rise to emergent

dynamics. In this study, we consider acoustics and hydrodynamics as two subsystems and

investigate the coupled behaviour between these two subsystems using synchronisation

theory.
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In the current study, we investigate whistling (aeroacoustic instability) as a synchronisation

phenomenon between two nonidentical subsystems. We use velocity 𝑢′ and acoustic

pressure 𝑝′ fluctuations measured from the aeroacoustic system to investigate the

synchronisation phenomenon.

2.3.1 Joint recurrence matrix

The joint recurrence matrix (JRM) can be considered as an extension of the recurrence

matrix to investigate the coupled dynamics of the two subsystems. A joint recurrence

matrix helps visualize the recurrence of the phase space trajectories of two different

subsystems at the same time (Goswami et al., 2013; Marwan and Kurths, 2002; Romano

et al., 2004).

The JRM for two subsystems having the time-delayed vectors X and Y is calculated by

computing the element-wise product of the individual recurrence matrices (𝑅𝑋 , 𝑅𝑌 ).

The equation for JRM can be written as,

𝐽𝑅𝑀𝑖 𝑗 = Θ
(
𝜖 −

X𝑖 − X 𝑗

) Θ (
𝜖 −

Y𝑖 − Y 𝑗

) . (2.59)

If the trajectories X and Y of the two subsystems recur simultaneously, then 𝐽𝑅𝑀𝑖 𝑗 = 1

else, 𝐽𝑅𝑀𝑖 𝑗 = 0.

Further, one can also quantify the topology of the joint recurrence plots using the RQA

measures recurrence rate 𝑅𝑅𝐽 and determinism 𝐷𝐸𝑇𝐽 . Note that the values and variations

of these recurrence measures depend on how we define the recurrence threshold 𝜖 while

computing the recurrence matrix. For instance, if a fixed 𝜖 is chosen, there are more

number of recurrence points within the radius of 𝜖 for the low-amplitude aperiodic

trajectory. Hence, we observe that the measure 𝑅𝑅 rises as the system exhibits the states

of low amplitude intermittency and aperiodicity. In contrast, if 𝜖 is chosen as a fraction

of the maximum diameter of the phase space, the measure 𝑅𝑅 decreases for the states

of intermittency and aperiodic dynamics. The decrease in 𝑅𝑅 is due to the sporadic
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Figure 2.3: Representation of the variation of the probability of recurrence 𝑃(𝜏) as a
function of time lag 𝜏. 𝑃(𝜏) variations for two different signals, represented as
black and blue curves are overlapped to identify the type of synchronisation at
different time intervals for the states of intermittency. (b) During an aperiodic
epoch, there is no overlap in the variations of 𝑃(𝜏) for the blue and black
signals, implying there is no relationship between the two signals. However,
during the (c) periodic epoch, there is an overlap between the curves of 𝑃(𝜏),
implying a phase synchronisation between the two signals. This figure is
reproduced with permission from Godavarthi et al. (2020), Chaos 30, 033121
(2014), published by AIP Publishing.

recurrence of the trajectory for the states of intermittency and aperiodicity (Godavarthi

et al., 2018).

2.3.2 Probability of recurrence

In synchronisation theory, it is important to identify the type of synchronisation that is

exhibited by the system. Hence, one can make use of the probability of recurrence to

identify the type of synchrony that persists between the variables or the subsystems of

the system being measured. The probability of recurrence quantifies the probability with

which a state vector of the trajectory recurs after a time lag 𝜏 (Romano et al., 2005), and

is given as,

𝑃(𝜏) = 1
𝑁 − 𝜏

𝑁−𝜏∑︁
𝑖=1

Θ (𝜖 − ∥X𝑖 − X𝑖+𝜏∥) . (2.60)

A recurrence of the signal is equivalent to an increment in phase by 2𝜋 (Romano et al.,
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2005). The synchronisation of the two coupled subsystems implies the locking of their

phases and frequencies. This locking of phase leads to the simultaneous appearance of

the apexes of 𝑃(𝜏) of two signals in the plots of probability of recurrence. The state is

referred to as a synchronised state (PS) when the frequencies of the two signals are locked,

and their amplitude remains uncorrelated (refer to Fig. 2.3). The PS state manifests as the

simultaneous occurrence of the peaks, but with unequal heights, in the plots of probability

of recurrence as a function of time lag. On the contrary, if a functional relationship exists

between the subsystems, the apexes of 𝑃(𝜏) for the subsystems occur simultaneously,

and also, the magnitude of the peaks are matched; this state is referred to as generalized

synchronisation (GS). For the state of GS, the RP and hence the probability of recurrence

plots will be identical (Lakshmanan and Senthilkumar, 2011). The states of PS and GS

are experimentally discovered by Pawar et al. (2017) in thermoacoustic systems
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CHAPTER 3

EXPERIMENTAL SETUPS AND DIAGNOSTICS

In order to study the generic attributes of the transitions to high amplitude oscillatory

instabilities in aero-thermoacoustic systems, we perform experiments in different

experimental configurations of thermoacoustic and aeroacoustic systems. In this chapter,

we discuss the experimental facilities and diagnostics used for conducting experiments

and acquiring data related to the results presented in this thesis.

The data for studying abrupt transitions in turbulent thermoacoustic systems (Chapter 4)

was obtained from the following sources:

1. Data set for a turbulent annular combustor having the abrupt transition via secondary
bifurcation was acquired by a team consisting of Dr. Samarjeet Singh, Dr. Amitesh
Roy, Mr. Midhun P. R. and Prof. R. I. Sujith in the year of 2019. Please refer to
Singh et al. (2021) for more details on the data.

2. Data set for a bluff body stabilised backward-facing step combustor with preheater
having the abrupt transition via secondary bifurcation was acquired by a team
consisting of Dr. Samadhan A. Pawar, Dr. Manikandan Raghunathan, Mr. Midhun
P. R., Ms. Reeja K. and Prof. R. I. Sujith in the year of 2019. Please refer to Pawar
et al. (2021) for more details on the data.

3.1 THERMOACOUSTIC SYSTEMS

The transitions to undesired high-amplitude oscillatory instabilities are investigated in

three different turbulent thermoacoustic systems. These systems function under turbulent

conditions and represent the dynamics of combustors in modern gas turbines and rocket

engines. The details of the combustor setups are discussed below.



3.1.1 Backward facing step combustor configurations

Figure 3.1(a) represents the experimental setup for the backward facing step combustor.

This test rig was previously used by Nair and Sujith (2014). A fluid mixture of compressed

air and liquid petroleum gas (60% Propane & 40% butane) is used for chemical reactions

in a combustion chamber. The combustion chamber is 1100 mm long and has a 90 × 90

mm2 square cross-section. The setup has three main sections along the fluid flow— a

plenum chamber, a burner, and the combustion chamber. The air enters the combustor

via a flow equalization chamber referred to as a plenum chamber, which helps isolate the

combustion chamber from the fluctuations upstream of the flow. The fuel is injected in

the burner section between the plenum chamber and the combustion chamber, where

the fuel and the air are premixed. The diameter of the burner is 40 mm. The fuel-air

mixture enters the combustion chamber at the dump plane, where there is a sudden

increase in the cross-sectional area from the burner to the combustion chamber. The end

of the combustion chamber is fixed to a large rectangular box referred to as a decoupler.

The dimensions of the decoupler are set to be larger than the cross-sectional size of the

combustion chamber. The utility of the decoupler is to reduce sound emissions from the

combustion chamber (Zinn, 1996).

The equivalence ratio 𝜙 is varied as a control parameter to study the dynamics of the

system. The equivalence ratio is defined as 𝜙 = Υactual/Υstoichiometric, where Υ is the ratio

of the rate of the mass flow of the fuel and the air. Thus, 𝜙 is a function of fuel and airflow

rates, which are controlled using mass flow controllers (MFCs). The uncertainty in the

flow rate measurement is ±1%. The uncertainty in the computed value of 𝜙 is ±2%. The

control parameter (𝜙) is changed in a quasi-static manner. To minimize the error in flow

rate measurement and to achieve the finer steps of variation in the control parameter

(airflow rate) at the bifurcation regime, two different MFCs are connected in parallel.

The maximum range of these MFCs is 2000 and 100 SLPM, and the corresponding error

in their main scale reading is 4 and 0.2 SLPM, respectively. The qualitative change in

the behaviour of the system is analysed by measuring the acoustic pressure fluctuations
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Figure 3.1: Schematic of (a) a backward facing step combustor which can be operated in
two different configurations based on the flame holding mechanisms. (b) The
swirler and (c) the bluff body are used as two different flame holders for the
backward facing step combustor. The design of this combustor was adapted
from Komarek and Polifke (2010)

in the combustion chamber. Piezoelectric pressure transducers (PCB103B02, 217.5

mV/kPa sensitivity) are used to measure acoustic field fluctuations. We acquire the

acoustic pressure signal for 5 s at a rate of 10000 samples per second, after an initial

waiting time of 3 s at each set point of the control parameter. The measured acoustic

pressure signal has an uncertainty of 0.15 Pa in its value. We performed experiments

in two different configurations of the backward facing step combustor, which will be

detailed in the following subsections.

Backward facing step combustor with a swirler configuration

A swirler (refer to Fig. 3.1b), inducing swirl motion to the flow, is used at the entry of

the combustion chamber. The swirling motion aids in the establishment of the flame

in a compact form, stretching over a small section of the combustion chamber. The

diameter (𝑑) of the swirler is 40 mm. The swirler consists of 8 vanes, and the vane-angle

is 40◦ relative to the direction of the bulk flow in the combustor. The location of the
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swirler is such that the front part of each vane is 20 mm from the dump plane. In

this swirler configuration, we maintain a constant fuel flow rate. The equivalence ratio

is varied by changing the airflow rate. The Reynolds number for the system varies

between 𝑅𝑒𝑑 = 2 × 104 ± 220 and 5 × 104 ± 220. Here, the Reynolds number is defined

as Re = 𝜌�̄�𝐷/Λ, where �̄� is the average velocity of the fuel-air mixture entering the

combustion chamber, 𝐷 is the diameter of the swirler, 𝜌 and Λ are the density and

dynamic viscosity of the mixture. A K-type thermocouple is used to measure the

temperature of the hot gases downstream of the flow. The signal for the temperature was

acquired for 5 s at a rate of 20 samples per second.

Backward facing step combustor with a bluff body configuration

In this configuration of the backward facing step combustor, we replace the earlier flame

holder (swirler) with a bluff body (refer to Fig. 3.1c). A bluff body slows the flow by

creating a flow re-circulation zone, providing sufficient time for the air-fuel mixture to

react in a compact zone of the combustion chamber (Chen et al., 1990). The bluff body

is located at a distance of 27.5 mm from the dump plane of the combustion chamber.

The diameter (𝑑) of the bluff body is 47 mm. The fuel for the combustor is introduced in

the burner via a hollow shaft anchoring the bluff body. We maintain a constant fuel flow

rate in this bluff body configuration. The equivalence ratio is varied by changing the

airflow rate. The corresponding Reynolds number, computed using the diameter of the

bluff body, varies in the range of 𝑅𝑒𝑑 = 1.5 × 104 ± 220 to 4 × 104 ± 220.

3.1.2 Annular combustor

Figure 3.2(a) represents a swirl-stabilized annular combustor, where sixteen flames from

the circumferentially arranged burners are established during the experiments. This test

rig was previously used by Singh et al. (2021); Roy et al. (2021). Premixed LPG and air

are used for chemical reactions. The air and the fuel initially enter a premixing chamber

through an air/fuel inlet. The premixed mixture then enters into a flow-settling chamber.

We incorporate a honeycomb-like structure inside the settling chamber to render the
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flow in one direction. The flow through the settling chamber encounters a hemispherical

flow divider that uniformly distributes the fuel-air mixtures to the 16 burner tubes. The

burner tubes exit into the combustion chamber, which has an outer and inner cylindrical

duct. The chemical reactions are individually established in the annulus of the outer

and the inner cylindrical duct after passing through the swirler fitted at the exit of each

burner tube. The swirlers consist of vanes whose vane angle 𝛽 is 60◦ with the axial flow

direction (refer to Fig. 3.2b). The burner tubes are 300 mm long and have a circular

cross-section (30 mm diameter). The diameter of the inner and the outer cylindrical ducts

are 400 mm and 300 mm, respectively. The length of the inner and the outer cylindrical

ducts are 510 mm and 140 mm, respectively.

Figure 3.2: Schematic of (a) the annular combustor comprising sixteen burners. At the
exit of each burner, (b) a swirler is used as a flame holder.

In this annular combustor setup, we vary the fuel flow rate to change the equivalence

ratio (𝜙) at a constant airflow rate. The Reynolds number of this turbulent system is

𝑅𝑒𝑑 ≈ 1.01 × 104 ± 220, computed based on the burner dimensions. The dynamics of

the system is analysed by measuring the fluctuations of the acoustic field signal inside
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the combustion chamber. Piezoelectric pressure transducers (PCB103B02) of sensitivity

217.5 mV/kPa are used for pressure fluctuation measurements. The pressure signal

at each control parameter is acquired for 5 s at a rate of 10000 samples per second,

after an initial waiting time of 3 s at each set point of the control parameter. A K-type

thermocouple is used to measure the temperature of the hot gases downstream of the

flow.

3.2 AEROACOUSTIC SYSTEM

In this study, we also investigate the transitions to oscillatory instabilities in an aeroacoustic

system. The schematic of the experimental setup used for the study is presented in figure

3.4. The airflow enters the plenum chamber through an inlet port. The plenum chamber

is connected to a circular duct (610 mm length and 50 mm diameter), which has the

facility to bolster two orifices (20 mm orifice diameter and 2.5 mm thickness). The

distance between the orifices is 18 mm, and the first orifice, located upstream of the flow,

is 220 mm away from the plenum chamber. A hot film probe, positioned between the

orifices using a mount, measures the velocity fluctuations. A microphone, mounted on

the wall of the pipe at a distance of 305 mm from the plenum chamber, is utilized to

quantify the acoustic pressure oscillations.

Experiments are conducted at the room temperature of 25 0C. The control parameter

of the system is the Reynolds number (𝑅𝑒), which is varied. 𝑅𝑒 is computed using the

formula 𝑅𝑒 = (𝜌�̄�𝑙𝑐)/Λ, where �̄� is the horizontal bulk flow velocity at the orifice, 𝜌 is

the air density (kg/m3), 𝑙𝑐 is the characteristics length which is equal to the diameter of

the orifice, and Λ is the dynamic viscosity of the air. The airflow rate is varied using

an Alicat (MCR series) mass flow controller (MFC) with a measurement uncertainty of

±(0.8% of reading + 0.2% of the full-scale reading). The maximum error in 𝑅𝑒 is ±170,

which is associated with the measurement uncertainty of the MFC. The airflow rate is

changed in a quasi-static fashion from 57 SLPM to 300 SLPM in steps of 3 SLPM. This
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Figure 3.3: Schematic of the aeroacoustic system, which has a confined flow through the
double orifices.

corresponds to the variation of 𝑅𝑒 from 3900 ± 101 to 21000 ± 235. A pressure field

pre-polarized microphone (Piezotronics PCB378C10), which has a preamplifier system

and a condenser, is used for measuring acoustic pressure fluctuations. The microphone

has a sensitivity of 1 mV/Pa and a resolution of 20 𝜇Pa. The data from the microphone

is acquired for 5 s at a sampling rate of 20 kHz. The inherent noise in the measurements

from the microphone is 7 mPa.

The velocity fluctuations, 𝑢′, are measured using a hot film probe connected to the constant

temperature anemometer (Dantec Dynamics, Multi-channel CTA-54N81). Since the

source of the sound for whistling is at the orifice and is a dipole source, only those modes

which have velocity antinode near the location of the source are favoured (Hirschberg

and Rienstra, 2004). Please refer to Appendix B.1 for more information on the mode

shapes of the observed dominant frequencies during whistling. Thus, the hot film probe

is located near the velocity anti-node of the excited modes and at a radial distance of 1

cm from the centre of the cross-sectional area of the pipe. The location of the probe is

chosen such that we capture the fluctuations caused by turbulence or vortical structures
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emerging from the orifice (Mettenleiter et al., 2000). The measured fluctuations from the

hot-film probe have contributions from both the acoustics and the hydrodynamic fields.

When there is no whistling, the influence of the acoustic field over the hydrodynamic

field is negligible, as there is no lock-in between the hydrodynamic and acoustic fields.

3.3 ACOUSTIC DECAY RATE

We monitored the acoustic damping of the aeroacoustic and thermoacoustic systems.

The experiments were conducted only when the damping fell within a specified range to

ensure repeatability. The decay rate, representing acoustic damping, was maintained at

the following values during the experiments:

1. Aeroacoustic system: −9.3 ± 2 s−1

2. Backward-facing step combustor: −7.8 ± 2s−1

3. Annular combustor: −31.5 ± 2 s−1

All the experimental configurations used in this study utilize compressed air stored in

an external tank. Changes in ambient conditions, such as heavy rainfall, can affect the

temperature and humidity of the airflow used in the experiments, thereby influencing the

acoustic damping properties of the aero-thermoacoustic systems. The specified decay

rate ranges were intuitively determined based on the experimental and ambient conditions.

To calculate the decay rates, we externally perturb the aero-thermoacoustic system at its

natural frequency and measure the rate at which the acoustic pressure oscillations decay

after the perturbation ceases (Perry, 1970; Culick and Kuentzmann, 2006).

Under no-flow conditions, the aeroacoustic system, backward-facing step combustor and

annular combustor are perturbed at 260 Hz, 240 Hz and 410 Hz, respectively. External

acoustic forcing is applied using loudspeakers (Minsound TD-200A) connected in parallel

to a power amplifier (Ahuja UBA-500M). The sinusoidal forcing signal required for this

process is generated using a Tektronix function generator (Model No. AFG1022). We

capture the evolution of acoustic pressure oscillations after generating the sinusoidal
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Figure 3.4: The representation of the acoustic pressure oscillations under no-flow
conditions, both before and after the abrupt shutdown of the loudspeaker. We
extract the envelope of the decaying pressure oscillations and fit an exponential
curve, represented in the form of 𝑝′ = 𝑚 exp−𝛼𝑡 . Here, 𝛼 represents the decay
rate corresponding to the decaying portion of the acoustic signal immediately
after turning off the loudspeaker

pressure disturbance and abruptly switching off the acoustic drivers. The envelope of the

decaying oscillations is extracted using the Hilbert Transform. A straight line is then

fitted to the semi-logarithmic plot of the envelope, with the slope of this plot representing

the decay rate of the thermoacoustic system.
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CHAPTER 4

ABRUPT TRANSITIONS IN TURBULENT
THERMOACOUSTIC SYSTEMS

Thermoacoustic instability (TAI) manifests as large amplitude periodic pressure

oscillations. These periodic oscillations are also referred to as limit cycle oscillations.

Lieuwen (2002) described the transition from stable combustor operation to unstable

combustor operation of TAI as a Hopf bifurcation from a fixed point to a limit cycle

solution. Several experimental studies have since then reported supercritical and

subcritical bifurcation to the state of limit cycles (Moeck et al., 2008; Li et al., 2017;

Juniper, 2012; Etikyala and Sujith, 2017; Subramanian et al., 2010; Guan et al., 2020).

However in turbulent combustors, the study by Nair et al. (2014) showed that the state of

intermittency occurs as a route to thermoacoustic instability from the stable operating

condition characterized by the state of chaos. Further, the state of intermittency observed

is described as the epochs of periodic oscillations amidst the regime of aperiodic

oscillations. The study also discusses the mechanism for such a kind of intermittency,

which is due to back-and-forth fluctuations of the parameters or the subsystems caused

by turbulence fluctuations. Further, it is a great challenge to model the dynamics of

chaos and the state of intermittency incorporating the deterministic turbulent

fluctuations. Therefore, several studies have incorporated the effect of turbulent

aperiodic fluctuations by perturbing the system with noise.

Moreover, the occurrence of intermittency leads to a smooth variation of the statistical

measures of the system, such as the root-mean-squared (rms) or Fourier amplitude, as

the state of the system changes from a state of combustion noise to TAI. Past studies

The results presented in this chapter are published in Bhavi, R. S., Pavithran, I., Roy, A., and Sujith, R. I.
(2023), Abrupt transitions in turbulent thermoacoustic systems, Journal of Sound and Vibration, 547,
117478. https://doi.org/10.1016/j.jsv.2022.117478

https://doi.org/10.1016/j.jsv.2022.117478


were focused on gradual transitions in turbulent combustors. However, recently, abrupt

transitions have been discovered in turbulent thermoacoustic systems (Roy et al., 2021;

Singh et al., 2021; Wang et al., 2021). The observation of abrupt transitions in highly

turbulent thermoacoustic systems is not understood clearly. Specifically, the explanation

of what makes a transition continuous or abrupt has been found lacking in the literature.

4.1 EXPERIMENTAL OBSERVATION OF ABRUPT SECONDARY

BIFURCATIONS

The experimental data for studying abrupt transitions in this chapter was obtained from

the following sources:

1. Data set for a turbulent annular combustor having the abrupt transition via secondary
bifurcation was acquired by a team consisting of Dr. Samarjeet Singh, Dr. Amitesh
Roy, Mr. Midhun P. R. and Prof. R. I. Sujith in the year of 2019. Please refer to
Singh et al. (2021) for more details on the data.

2. Data set for a bluff body stabilised backward facing step combustor with preheater
having the abrupt transition via secondary bifurcation was acquired by a team
consisting of Dr. Samadhan A. Pawar, Dr. Manikandan Raghunathan, Mr. Midhun
P. R., Ms. Reeja K. and Prof. R. I. Sujith in the year of 2019. Please refer to Pawar
et al. (2021) for more details on the data.

We begin by considering the characteristics of the bifurcation when the equivalence ratio

(𝜙) is changed in these turbulent combustors. Figure 4.1(a) depicts the variation in 𝑝′rms

when the control parameter 𝜙 is increased in the annular combustor. For low values

of equivalence ratio (𝜙 < 0.8), the state of the system is characterised by combustion

noise (cf. Fig. 4.1b) possessing very low amplitude (𝑝′rms ≈ 20 Pa) of fluctuations. The

fluctuations are characterised by an unimodal distribution and a broadband spectrum.

Upon increasing the equivalence ratio (𝜙) beyond a value of 0.8, the state of intermittency

is observed, where aperiodic fluctuations are randomly interspersed with bursts of

periodic oscillations (cf. Fig. 4.1c). The appearance of periodic bursts, whose amplitude

is higher than the amplitude of combustion noise, alters the initially unimodal distribution;

we observe secondary peaks at |𝑝′| ≠ 0 (see PDF in Fig. 4.1c). The increased periodic

56



content appears as a narrowband peak in the amplitude spectrum. Upon further increasing

the value of 𝜙, the state of low amplitude limit cycle oscillations (LCO) with 𝑝′rms ≈ 373

Pa is observed. The limit cycle oscillations show (cf. Fig 4.1d) a bi-modal distribution

and a narrowband peak in the amplitude spectrum at 220 Hz. Finally, for 𝜙 > 0.87, we

observe (cf. Fig 4.1e) an abrupt transition from the low amplitude primary limit cycle

oscillations to a large amplitude (𝑝′rms ≈ 1500 Pa) secondary limit cycle oscillations.

Figure 4.2 shows the characteristics of abrupt transition to large amplitude limit cycle

oscillation in the swirl-stabilized and preheated bluff-body stabilized combustor as 𝜙

is decreased. The transition is observed when 𝜙 is decreased from 0.99 to 0.54 in a

quasi-static manner in the swirl-stabilized combustor, while it is observed for a decrease in

𝜙 from 1.09 to 0.62 in the preheated bluff-body stabilized combustor. In each of these two

combustors, a decrease in 𝜙 leads to a transition from combustion noise to high-amplitude

TAI through the states of intermittency and low-amplitude limit cycle oscillations. These

states in the swirl and bluff-body combustor have similar statistical properties to the

representative plots shown in Fig. 4.1(b-e). The abrupt transition, thus, takes place

through a secondary bifurcation to large amplitude limit cycle oscillations. Note that the

swirl-stabilized backward facing step combustor depicts secondary bifurcation to very

large amplitude levels (𝑝′rms ≈ 4 kPa). Thus, it is evident from Figs. 4.1 and 4.2 that these

turbulent thermoacoustic systems exhibit abrupt transitions in the form of secondary

bifurcations. Secondary bifurcation appears in disparate turbulent combustion systems

with very different flame and acoustic responses. Thus, the common phenomenology

across disparate combustors implies a certain universal mechanism through which

secondary bifurcation occurs in turbulent combustors. Motivated by these results, a

mathematical model, as discussed in Chapter 2, is considered for describing secondary

bifurcations. The equation is given as,

¥𝜂 +
(
𝜇6𝜂

6 + 𝜇4𝜂
4 + 𝜇2𝜂

2 − 𝜇0

)
¤𝜂 + 𝜔2𝜂 + 𝜉 = 0, (4.1)

where 𝜇0 is the control parameter and 𝜇2, 𝜇4, and 𝜇6 are the coefficients of the nonlinear

57



Figure 4.1: Characteristics of secondary bifurcation in the annular combustor. (a) The
variation of 𝑝′rms as a function of the control parameter 𝜙. Panels (b-e)
shows the time series, the PDF P(𝑝′) and the amplitude spectrum |𝑝( 𝑓 ) | of
pressure fluctuations 𝑝′ observed during the states of (b) combustion noise,
(c) intermittency, (d) low amplitude limit cycle oscillations and (e) large
amplitude limit cycle oscillations, as indicated in panel (a). Note the increase
in the abscissa limits for the time series and distribution in panels (b) to (e).
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Figure 4.2: The variation of 𝑝′rms as a function of 𝜙 during secondary bifurcation in (a)
the swirl-stabilized backward facing step combustor and (b) the bluff-body
stabilized backward facing step combustor with preheated air.

terms. The effect of turbulence is included as additive Gaussian white noise 𝜉, which

is delta correlated in time: ⟨𝜉 (𝑡)𝜉 (𝑡 + 𝜏)⟩ = Γ𝛿(𝜏), where Γ is the noise intensity. The

symbol ⟨.⟩ represents the ensemble of realizations of the stochastic process. Thus, the

overall dynamics is governed by the second-order stochastic differential equation. The

model is extended to obtain primary and secondary limit cycle solutions, derive the

underlying potential functions, and underscore the role of stochastic fluctuations on the

observed phenomenology.

4.2 SLOW FLOW REPRESENTATION OF THE STOCHASTIC SYSTEM

Let us now consider the effect of stochastic fluctuations on the transition to limit cycle

oscillations. One can consider the acoustic variable 𝜂(𝑡) to be quasi-harmonic (Minorsky,

1962), such that we have:

𝜂(𝑡) = 𝐴(𝑡) cos [𝜔𝑡 +Ω(𝑡)] . (4.2)

This decomposition allows us to separate the evolution of envelope-amplitude 𝐴(𝑡) and

phase Ω(𝑡), which vary at a slower time scale in comparison to the faster time scale

2𝜋/𝜔. Using the method of averaging and simplifying the stochastic functions following
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Figure 4.3: Bifurcation characteristics of the stochastic thermoacoustic system. Variation
in the amplitude of fluctuations for (a) subcritical and (b) supercritical
bifurcation followed by a secondary bifurcation to a large amplitude limit
cycle. The bifurcation diagram for the deterministic system (Γ = 0, cf.
Eq. 4.3) is indicated by the black line. The difference in the abscissa in (a) and
(b) indicates the significant difference between the amplitude of limit cycles
due to subcritical and secondary bifurcation. The solid lines correspond
to the stable solution, while the broken lines indicate an unstable solution.
The contour shows the variation in probability density function P(𝐴) with
parameter 𝜇0, estimated according to Eq. ((4.11)). The noise intensity is fixed
at Γ = 106.5. The other model parameters are: (a) 𝜇2 = −10, 𝜇4 = 3, 𝜇6 = 0;
and (b) 𝜇2 = 7, 𝜇4 = −0.6, 𝜇6 = 0.01. Labels 𝜇𝐻 , 𝜇𝐹 , and 𝜇𝑆 indicate the
parameter value 𝜇0 at which Hopf, fold, and secondary bifurcations occur.
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(Krylov and Bogoliubov, 2016; Stratonovich, 1967; Balanov et al., 2009) for further

details), one obtains a set of Langevin equation governing the evolution of the slowly

varying amplitude and phase of the system, which are expressed as:

¤𝐴 =
𝜇0
2
𝐴 − 𝜇2

8
𝐴3 − 𝜇4

16
𝐴5 − 5𝜇6

128
𝐴7 + Γ

4𝜔2𝐴
+

√
Γ

√
2𝜔

𝜉1, (4.3)

¤Ω =

√
Γ

√
2𝜔𝐴

𝜉2. (4.4)

Here, 𝜉1 and 𝜉2 are two uncorrelated Gaussian white noise terms with zero mean and

unit variance. Note that for a deterministic system, the evolution of the phase is zero

( ¤Ω = 0), and now with the addition of noise, the phase drifts. In Eq. (4.3), the sign

associated with the factor 𝜇0/2 determines the linear stability of the system. Further,

the term Γ/4𝜔2𝐴 + (
√
Γ/

√
2𝜔)𝜉1 arises due to the covariance of stochastic terms in the

Fokker-Planck equation of the joint PDF of 𝐴 and Ω. The Langevin equation (Eq. 4.3)

can be expressed in terms of the potential function 𝑉 , as shown below:

¤𝐴 = −𝑑𝑉

𝑑𝐴
+

√
Γ

√
2𝜔

𝜉1. (4.5)

Here, the negative sign associated with it implies the fact that the evolution of the system

tends to minimize the potential function. The potential function 𝑉 (𝐴, 𝜇0) can then be

determined by comparing Eqs. (4.3 & 4.5) and evaluating the resulting integral. This

leads to

𝑉 (𝐴) = −𝜇0
4
𝐴2 + 𝜇2

32
𝐴4 + 𝜇4

96
𝐴6 + 5𝜇6

1024
𝐴8 − Γ

4𝜔2 ln 𝐴, (4.6)

which defines the potential function of the overall system.

4.3 STATIONARY SOLUTION OF THE FOKKER-PLANCK EQUATION

The stochastic differential equation can be re-cast in the Îto sense (A. Pavliotis, 2014),

which would allow us to invoke the Fokker-Planck equation for the evolution of P(𝐴)

corresponding to the Langevin equation of 𝐴. Thus, in the Îto sense, Eq. (4.5) can be
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written as,

𝑑𝐴 = Ψ(𝐴)𝑑𝑡 + 𝑑𝑊, (4.7)

where, Ψ(𝐴) is a function defined as,

Ψ(𝐴) = −𝑑𝑉

𝑑𝐴
=

𝜇0
2
𝐴 − 𝜇2

8
𝐴3 − 𝜇4

16
𝐴5 − 5𝜇6

128
𝐴7 + Γ

4𝜔2𝐴
, (4.8)

and 𝑑𝑊 = 𝜉𝑑𝑡 is the increment of the Wiener process. Recall that it was assumed that

the noise 𝜉 is delta-correlated, a condition that is seldom fulfilled in real systems. The

noise usually possesses finite correlation time (𝑡cor). For the present purposes, if 𝜉 is

sufficiently fast such that 𝑡cor is much lesser than the relaxation time of the system, the

evolution of the PDF P(𝐴) satisfies the Fokker-Planck equation

𝜕

𝜕𝑡
P(𝐴, 𝑡) = − 𝜕

𝜕𝐴
[Ψ(𝐴)P(𝐴, 𝑡)] + Γ

4𝜔2
𝜕2

𝜕𝐴2P(𝐴, 𝑡). (4.9)

Here, Ψ(𝐴) and Γ/4𝜔2 are the drift and diffusion coefficients, respectively. At large times,

one can assume that the distribution reaches a stationary state, such that: lim𝑡→∞ P(𝐴, 𝑡) =

P(𝐴). Thus, Eq. (4.9) reduces to

𝑑

𝑑𝐴
P(𝐴) − 4𝜔2

Γ
Ψ(𝐴)P(𝐴) = 0. (4.10)

This equation can be readily solved to yield

P(𝐴) = N exp
(
−4𝜔2

Γ
𝑉 (𝐴)

)
. (4.11)

where N is a constant such that
∫ ∞

0 P(𝐴) = 1.

4.4 EFFECT OF NOISE LEVELS ON THE TRANSITION

The analytically derived probability distribution function P(𝜂) is plotted as a function of

𝜇0 in Eq. (4.11) in Fig. 4.3. For obtaining the subcritical bifurcation, we set 𝜇6 = 0, 𝜇4 = 3

and 𝜇2 = 10, while for the secondary bifurcation, we 𝜇6 = 0.01, 𝜇4 = −0.6 and 𝜇2 = 7.

The bifurcation for the purely deterministic case is obtained by setting the noise intensity

Γ = 0 in Eq. (4.3) and plotting the resulting solution. Figure 4.3 compares the effect
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of the same level of noise intensity Γ = 106.5 on the characteristic of bifurcation. One

can notice that for the same noise intensity, an initially sub-critical Hopf bifurcation

transforms into a continuous sigmoid-type transition, as depicted by the contour of P(𝐴)

in Fig. 4.3. On the other hand, secondary bifurcation remains abrupt with an important

difference: the fixed point solution is coloured by noisy fluctuations, which hide the

sharp demarcation in the dynamics at the location of supercritical transition 𝜇0 = 𝜇𝐻 .

This is precisely what is observed in the bifurcation plots from experiments (cf. Figs.

4.1a and 4.2) where the amplitude rises through the state of intermittency before the state

of the low-amplitude limit cycle is reached.

Figure 4.4: Simulated time series of 𝜂(𝑡), probability density function P(𝜂) and
the spectrum 𝜂( 𝑓 ) from the stochastic model during the state of (a)
combustion noise (𝜇0 = −20), (b) intermittency (𝜇0 = −5), (c) low-amplitude
thermoacoustic instability (𝜇0 = 5) and (d) high-amplitude thermoacoustic
instability (𝜇0 = 20). The simulation parameters are: 𝜇6 = 0.01, 𝜇4 = −0.6,
𝜇2 = 7 and Γ = 106.5.

To see this effect clearly, one can numerically simulate the model (Eq. 4.1) and plot the

time series, P(𝜂) and 𝜂( 𝑓 ) for four representative states across the transition in Fig. 4.4.

At 𝜇 = −20, the time series depicts aperiodic fluctuations with some periodic content (cf.
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Fig. 4.4a). However, the spectral amplitude remains very low. The distribution P(𝜂)

shows unimodal characteristics, a fact also observed in the experimental data (cf. Fig.

4.1a). We also note here that deterministic features such as chaos and multifractality of

the state of combustion noise are not captured by the additive white noise considered

here. Next, at 𝜇0 = 2 (cf. Fig. 4.4b), one can observe intermittent bursts amidst aperiodic

fluctuations. The distribution P(𝜂) shows a change from a unimodal distribution to

peaks at |𝜂 | ≠ 0, a feature that is noted in Fig. 4.1(c). Finally, we observe low-amplitude

and high-amplitude limit cycle oscillations at 𝜇0 = 5 and 𝜇0 = 20 as seen in Fig. 4.4c,d.

To further quantify the effect of noise on the characteristics of an abrupt transition, we

define the noise factor 𝑅 as

𝑅 =
𝑝′rms(CN)

Δ𝑝′(𝜇𝑐)
× 100%. (4.12)

The noise factor 𝑅 is the ratio of the amplitude of 𝑝′rms during the state of combustion

noise and amplitude difference in the fluctuations at the critical transition point (𝜇𝑐). The

critical parameter for the subcritical point is 𝜇𝑐 = 𝜇𝐻 while for secondary bifurcation, it is

𝜇𝑐 = 𝜇𝑆 (cf. Fig. 4.3). For instance, the amplitude difference at the secondary bifurcation

is Δ𝑝′(𝜇𝑆) = 𝑝′rms(HA-LCO) − 𝑝′rms(LA-LCO), where HA-LCO and LA-LCO indicate

the high-amplitude and low-amplitude limit cycle oscillations at 𝜇𝑐 = 𝜇𝑠. Thus, the noise

factor 𝑅 compares the effect of combustion noise on the observed transition.

The noise factor 𝑅 during the abrupt transition in the annular, longitudinal and preheated

combustor are 1.86%, 4.37% and 10%. Similarly, for the transitions shown in Fig. 4.3,

the noise factor 𝑅 is 20% for the initially subcritical bifurcation and 8% for the secondary

bifurcation. Thus, 𝑅 values of the experimental results indicate that the noise levels of

the combustor are not comparable to the amplitude of secondary limit cycle oscillation

to transform the abrupt secondary transition into a continuous sigmoid-type transition.

We also plot the stochastic bifurcation diagram by setting the noise intensity in the

model to Γ = 107.5 in Fig. 4.5b. For this case, it is noted that the secondary bifurcation
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displays a continuous, sigmoid-type transition. The noise factor for the case of Γ = 107.5

corresponds to 𝑅 = 35%. Thus, we find that the abrupt secondary bifurcations can be

made continuous at very high noise levels, something which may not be feasible in

real-world turbulent combustors.

4.4.1 Potential landscape of the secondary bifurcation

Let us now consider the stability of the dynamical states observed during the secondary

bifurcation. The stability of various dynamical states is best visualized through the

potential function 𝑉 (Eq. 4.6). From the definition of the potential function, we have

Ψ(𝐴) = −d𝑉/d𝐴. Note that the minima and the maxima of the potential function

𝑉 (𝐴, 𝜇0) correspond to the stable and unstable fixed points of Ψ(𝐴, 𝜇0). The value of

Ψ′(𝐴) is a measure of the stability of the fixed points as Ψ′(𝐴) corresponds to the second

derivative of the potential function (d2𝑉/d𝐴2) (Strogatz, 2018). The second derivative is

a measure of the curvature of the potential function, describing its sharpness. Thus, the

higher the magnitude of −Ψ′(𝐴) is, the higher would be the stability of the fixed point

(Strogatz, 2018). We discuss how the variation in the parameter 𝜇0 leads to a change in

the stability of the potential Ψ(𝐴) next.

The variation in the potential function 𝑉 (𝐴) is shown in Fig. 4.5(c,d) at 𝜇0 = −5, 4

and 12 to compare their behaviour at different states, indicated by the dotted lines in the

transition diagram. The potential functions are shown at two different noise intensities

(Γ = 106.5 and Γ = 107.5). The associated distribution P(𝐴) is also shown below the

potential 𝑉 (𝐴). When 𝜇0 = −5, the system is at stable equilibrium (Fig. 4.5c), and any

amount of perturbation to the stable state will be restored to its equilibrium position.

Thus, the system exhibits globally stable fixed points for 𝜇0 < 0. The additive noise

continuously perturbs the system around the stable fixed points. For low noise levels

(Γ = 106.5), the mean of the distribution P(𝐴) is at the minimum of the potential function

𝑉 (𝐴) (cf. Fig. 4.5c, at 𝜇0 = −5). In contrast, at a higher noise level (Γ = 107.5), P(𝐴)

shows a wider distribution, as the variance of the noise is much larger (see Fig. 4.5d, at
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Figure 4.5: Effect of stochastic fluctuations on the properties of secondary bifurcation
for (a) Γ = 106.5 and (b) Γ = 107.5. The contours show the variation in
the distribution P(𝐴) as a function of 𝜇0. Panels (c) and (d) depict the
potential functions 𝑉 (𝐴) (top panel) and distribution P(𝐴) (bottom panel).
The bold line indicates the potential 𝑉 . The contributions of individual terms
of Eq. (4.6) are also indicated. 𝑉 (𝐴) and P(𝐴) are shown at 𝜇0 = −5, 4
and 12, marked by the dotted lines in panels (a) and (b). Other simulation
parameters are the same as that in Fig. 4.3(b).
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Figure 4.6: Illustration of hysteresis observed during the secondary bifurcation. Plot
shows the variation of the potential function 𝑉 (𝐴) when the value of the
parameter is decreased from 𝜇0 = 15 to 𝜇0 = −3.

𝜇0 = −5).

For 𝜇0 > 0, we notice that the potential 𝑉 (𝐴) develops a secondary trough. We observe

a unimodal Gaussian distribution P(𝐴) for Γ = 106.5 at 𝜇0 = 4 and 𝜇0 = 12 (Fig. 4.5c).

We notice that there is a shift in P(𝐴) from a distribution centred at a lower amplitude

to one centred at a much higher amplitude. This shift at 𝜇0 = 12 is associated with

the secondary trough in the potential 𝑉 (𝐴) becoming the global minima, implying its

global stability. On the other hand, for Γ = 107.5, we notice that at 𝜇0 = 4, the potential

𝑉 (𝐴) has a double-well characteristic with a comparable value of minima. As the noise

level is higher, the perturbations can take the system from one potential well to the

next. Consequently, the distribution P(𝐴) has a bimodal distribution. The bimodal

distribution implies the presence of intermittency, where the amplitude switches between

low-amplitude oscillations (wider distribution) and higher-amplitude bursts of periodic

oscillations (narrow distribution). Finally, at 𝜇0 = 12, we have a unimodal distribution.

The second trough has a lower minima, implying that the system reaches the globally

stable limit cycle oscillation at very large amplitude levels.

To illustrate the phenomenon of hysteresis, we plot the potential functions for different

values of 𝜇0 (15, 9, 3, and -3), which is shown in Fig. 4.6. The system depicts the state of
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the secondary limit cycle at 𝜇0 = 15. Reversing 𝜇0 below 𝜇𝑆 will not restore the state of

the system back to the primary limit cycle. Upon reducing the parameter value (𝜇0 = 9

and 3), another trough forms at a lower amplitude value. However, the potential barrier

(local maxima in 𝑉) of the unstable fixed point separating the two troughs is very high,

thereby hindering the transitions back to either the primary limit cycle or the fixed point.

The system transitions to the fixed point solution only when the parameter is reversed

below the fold point (i.e., 𝜇0 < 𝜇𝐹).

4.5 CONCLUDING REMARKS

To summarize, we reported the observation of secondary bifurcation in three disparate

turbulent combustors – annular combustor, swirl-stabilized combustor, and bluff-body

stabilized combustor with preheated air – despite them having completely different flame

responses and acoustic characteristics. These systems exhibit a sequence of transitions

from combustion noise to intermittency to low-amplitude limit cycle oscillations, followed

by an abrupt jump to large-amplitude secondary limit cycle oscillations.

We also note that the intermittency obtained here in the model is due to the effect of

noise-induced fluctuations. According to the studies, we come across broadly three

kinds of mechanisms for the state of intermittency or the dynamics of epochs of periodic

oscillations amidst the epochs of aperiodic oscillations. They are: intermittency as a

dynamical state (Kabiraj and Sujith, 2012; Nair et al., 2014), intermittency due to repeated

switching between co-existing states possibly due to noise (triggering mechanism, Kabiraj

et al. (2020)), and intermittent oscillations induced by noise (noise-induced coherence,

Saurabh et al. (2017)). The intermittency obtained in the model of the current study

corresponds to dynamics obtained by triggering and noise-induced oscillations. Further in

the model, we have considered eigenmodes j=1, ignoring the mean flow and temperature

gradients. Therefore, the current model is insufficient to capture the precise dynamics

of chaos and intermittency; the influence of the higher modes is additionally required
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to describe the complex dynamics. One can consider the approach of fractional order

differential equation to capture the intricate dynamics such as chaos Varghese et al.

(2021). Alternatively, one can also utilize the concept of the kicked oscillator model to

model the dynamics of intermittency Nair and Sujith (2015).

However, the current approach is sufficient to show that a deterministic subcritical

bifurcation is transformed into a continuous sigmoid-type transition, typical of the

intermittency route, in the presence of noise. By means of comparison, we observe

that for a given intensity of noise, which is high enough to transform a subcritical Hopf

bifurcation into a continuous one, the secondary bifurcation to a large amplitude limit

cycle remains abrupt.
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CHAPTER 5

CONTINUOUS RAPID TRANSITIONS IN
TURBULENT THERMOACOUSTIC SYSTEMS

In the previous chapter, we showed that turbulent combustors exhibit abrupt transitions.

These abrupt transitions are also referred to as explosive transitions and are characterized

by the phenomenon of hysteresis (Kumar et al., 2015). The occurrence of hysteresis is due

to the simultaneous presence of multiple stable regimes for a range of control parameters

(Zou et al., 2014). However, in practical engineering systems, there are exceptions where

a genuine abrupt rise in the statistical measure of the oscillations is observed, but the

transition is not discontinuous (Brøns and Bar-Eli, 1991). Such transitions, where a

rapid rise in the magnitude of the fluctuation occurs for a minute increment in the control

parameter, were primarily investigated in the Van der Pol oscillator model and are referred

to as canard explosions (Krupa and Szmolyan, 2001). Canard explosions have been

reported in many real-world systems such as chemical oscillations (Brøns and Bar-Eli,

1991), ground dynamics of an aircraft (Rankin et al., 2011), neuronal activity (Moehlis,

2006), predator-prey food chains (Deng, 2004), and light emitting diodes (Marino et al.,

2011).

In a transition involving a canard explosion, the magnitude of the limit cycle grows

significantly soon after the Hopf bifurcation (Börgers, 2017). The dynamics of the system

during this transition become highly sensitive to variation in the control parameter. There

is a significant growth in the magnitude of the oscillation for an exponentially small range

of values of the control parameter at the canard explosion regime (Brøns and Bar-Eli,

1991). Hence, a canard explosion appears abrupt if there is a lack of resolution in the

The results presented in this chapter are published in Bhavi, R. S., S. Sudarsanan, M. Raghunathan,
A. Bhaskaran, and Sujith, R. I. (2024), Canard explosions in turbulent thermo-fluid systems, Chaos:
An Interdisciplinary Journal of Nonlinear Science, 34, 103133. https://doi.org/10.1063/5.
0223320

https://doi.org/10.1063/5.0223320
https://doi.org/10.1063/5.0223320


variation in system parameters (Diener, 1984). A continuous transition comprising a

canard explosion, albeit appears abrupt, traces the same forward and reverse path in

the control parameter variation (Börgers, 2017). Further, large magnitude bursts and

mixed-mode oscillations are observed when the system exhibits slow-fast dynamics at

the canard explosion regime (Han and Bi, 2012; Desroches et al., 2013). In this chapter,

the current study reports the observation of canard explosions in thermo-fluid systems.

We present the experimental results for the rapid rise in the magnitude of the acoustic

pressure oscillations within a minute range of the control parameter, a principal feature

of the canard explosion.

5.1 CANARD EXPLOSIONS IN TURBULENT COMBUSTORS

Figure 5.1 represents the bifurcation diagram and the nature of the sudden transition in

the bluff body stabilized dump combustor. In order to study the sudden transitions via

canard explosions, the control parameter (𝜙) of the system is varied. Initially, when the

airflow rate is varied in steps of 30 SLPM, we observed an abrupt transition (refer to

points d and e in Fig. 5.1a). The abrupt transition is from low magnitude (𝑝′rms = 420 Pa)

to high magnitude (𝑝′rms = 3525 Pa) acoustic pressure fluctuations. Here, 𝑝′rms represents

the root mean square value of the acoustic pressure fluctuations (𝑝′). The corresponding

time series are presented in Fig. 5.1(d, e). To further investigate this seemingly abrupt

transition, the airflow rate is varied at finer steps (10 SLPM) between the points of the

control parameter corresponding to the abrupt jump. A continuous, albeit steep, variation

in the rms value of 𝑝′ is observed when the control parameter is varied in finer steps

(refer to Fig. 5.1b). We have also performed experiments, varying at finer steps of 𝜙

0.006 (airflow of 5 SLPM), to confirm continuous rapid rise (please refer to Appendix

A.2). Further, it is noted that the continuous transition occurs via a state of bursting (refer

to Fig. 5.1f-i). During the bursting state, one can observe large amplitude fluctuations

(𝑝′ ≈ 3500 Pa) amidst low amplitude fluctuations (𝑝′ ≈ 500 Pa) (refer to Fig. 5.1g).
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Figure 5.1: Representation of a sudden transition to high amplitude periodic oscillations
via canard explosion in the bluff body stabilized dump combustor. (a, b & c)
The bifurcation diagrams for the variation of the rms value of the acoustic
pressure fluctuations (𝑝′rms) as a function of the equivalence ratio 𝜙. (d-i)
The corresponding time series of the acoustic pressure signal during canard
explosion.(a) Sudden transition from a low amplitude (d) (𝑝′rms = 420 Pa)
to very high amplitude (e) (𝑝′rms = 3525 Pa) acoustic pressure fluctuations
as 𝜙 is varied. When 𝜙 is varied in finer steps between these apparently
abrupt transition points, we observe a (b) continuous transition (f-i) to high
amplitude fluctuations via (g) bursting dynamics. (c) The transition retraces
the forward path when 𝜙 is varied in the reverse direction, implying the
absence of the hysteresis. Thus, a transition with a rapid increase in the
magnitude of acoustic pressure fluctuations is observed within a very narrow
range of the control parameter.
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Further, when the control parameter is varied in the reverse direction, the transition

retraces the forward path (refer to Fig. 5.1c). Similar observations of the canard explosions

were observed when experiments were performed in a swirl-stabilized dump combustor

(Fig 5.2). In the swirl-stabilized dump combustor, as the equivalence ratio is decreased

from 0.783 to 0.532, a rapid decrease in the value of 𝑝′rms is observed (refer to the points

a1, a2, & a3 of Fig. 5.2a). The transition is from a state of high magnitude fluctuations

(𝑝′rms = 4730 Pa) to a state of low magnitude fluctuations (𝑝′rms = 770 Pa) (refer to

Fig. 5.2a1, a3). Additionally, it is noted that when the parameter is varied in the reverse

direction, the system retraces the forward path (Fig. 5.2a). The difference in the values

of 𝑝′rms at the state of thermoacoustic instability in forward and reverse paths is due to

increased damping as a result of prolonged heating of the combustor walls (Pavithran

et al., 2023). Thus, we note that a continuous but steep transition involving a canard

explosion exhibits no hysteresis.

Figure 5.2: Representation of the sudden transition via canard explosion in a swirl
stabilized dump combustor. (a) The forward and reverse path of the transition
via the canard explosion. The equivalence ratio (𝜙) in the forward path is
varied from 0.783 to 0.532. It is noticed that the transition occurs via the
state of large amplitude bursting (a1-a3).

Further, in the swirl stabilized dump combustor, the steep rise in the rms value of 𝑝′ to

a high amplitude oscillatory instability occurs via the state of large amplitude bursting
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(refer to point a2 in Fig. 5.2a and the corresponding time series in Fig. 5.2a2). The state

of bursting has imprints corresponding to the states of low-amplitude fluctuations and

high-amplitude fluctuations (Fig. 5.2a3 & a1). Similarly, when 𝜙 is varied from 1.4 to 0.9

in an annular combustor, a sudden transition for 𝜙 > 1.075 is observed (refer to Fig. 5.3a).

Upon varying 𝜙 in the reverse direction, the transition retraces its path. Moreover, it is

noted that the transition occurs via a state of large amplitude bursting (refer to Fig. 5.3b2).

The bursting state has the imprints of low-amplitude fluctuations and high-amplitude

fluctuations (cf. Fig. 5.3b1, b2 & b3), similar to the bursting characteristics observed in

the swirl stabilized dump combustor. However, the time interval of bursting oscillations

in the annular combustor is larger than the time interval of bursting in the swirl-stabilized

combustor. In summary, in all three combustors, it is noted that the amplitude of the

bursts corresponding to an underlying canard explosion is very high due to the rapid

nature of the transition at the bifurcation regime.

Figure 5.3: Representation of the sudden transition via canard explosion in an annular
combustor. (a) The forward and reverse path of the transition via the canard
explosion. The equivalence ratio (𝜙) in the forward path is varied from 1.4
to 0.9. We notice that the transition occurs via the state of large amplitude
bursting (b1-b3).

In order to investigate the bursting phenomenon, an experimental measurement of

temperature fluctuations of the hot exhaust gases for the swirl-stabilized dump combustor
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during the state of bursting (𝜙 = 0.657). The temperature fluctuations are measured

using a K-type thermocouple. The exhaust gas temperature is governed by the internal

variables of the combustor, such as flame temperature, equivalence ratio and the heat

transfer rate to the combustor walls. These variables, in turn, govern the dynamics of the

oscillatory instabilities exhibited by a combustor.

Figure 5.4 represents the variation in temperature alongside the acoustic pressure

fluctuation 𝑝′ during bursting in a swirl stabilized dump combustor. We note that there

is a strong correlation between the temperature fluctuation (𝑇 ′) and the envelope of

the bursting oscillations (𝑝′env). The strength of the correlation is tested by computing

Pearson’s correlation coefficient (𝑟), and the value of 𝑟 is 0.84 for 𝑇 ′ and 𝑝′env. The time

series of 𝑇 ′ is band passed to remove the fluctuations lesser than 1 Hz for computing

the value of 𝑟. Moreover, the local maxima of 𝑇 ′ are in the high amplitude bursting

regime of 𝑝′, and the local minima of 𝑇 ′ are in the low amplitude regime of 𝑝′ (Fig. 5.4a).

This rhythmic variation of 𝑇 ′ and 𝑝′env is also evident in the amplitude spectrum of the

envelope of acoustic pressure fluctuations (𝑝′env) and the temperature fluctuations (𝑇 ′
env)

having the same dominant frequency at 6 Hz (refer to Fig. 5.4b, c). A similar observation

of variation in 𝑇 ′ and the envelope of 𝑝′, but out of phase pattern, is made for the state of

large amplitude bursting in the annular combustor at 𝜙 = 1 (refer to Fig. 5.4d).

Further, the past literature on bursting dynamics suggests that bursting occurs when a

system parameter fluctuates at a slower time scale (compared to the system oscillation)

at the bifurcation regime (Izhikevich, 2000; Kasthuri et al., 2019; Tandon et al., 2020).

Therefore, observing variation in temperature fluctuations in correlation with the bursting

amplitude (Fig. 5.4), we note that a system parameter is fluctuating at a slower time scale

at the bifurcation regime.

Thus, it is evident from Figs. 5.1, 5.2 and 5.3 that sudden transitions via canard explosions

occur in three different turbulent thermoacoustic systems. Despite differences in the
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Figure 5.4: (a) Representation of the variation of the exhaust gas temperature (𝑇 ′) along
with the acoustic pressure fluctuations (𝑝′) for a swirl stabilized dump
combustor, measured during the state of bursting via canard explosions
(𝜙 = 0.657). (b-c) The amplitude spectrum of the envelope of acoustic
pressure fluctuations (𝑝′env) and the temperature fluctuations (𝑇 ′

env) have the
same dominant frequency at 6 Hz. (d) The variation of 𝑇 ′ along with 𝑝′

for an annular combustor, measured during the state of bursting via canard
explosions (𝜙 = 1). Notice the pattern of variations in 𝑇 ′ and the envelope of
𝑝′; the maxima of 𝑇 ′ is in the region of minimum 𝑝′, and the minima of 𝑇 ′ is
in the region of maximum 𝑝′.

nature of the flow fields and the flame acoustic interactions in these different turbulent

combustor configurations, we observe a common transition via canard explosion. The

observation of large amplitude bursts in the regime of bifurcation hints towards an

underlying universal mechanism, which we illustrate in the following subsections using a

low-order model for thermo-fluid systems. Inspired by the experimental observations,

we consider a Van der Pol oscillator as illustrated by Ananthkrishnan et al. (1998) to

describe the sudden transition. We reduce the influence of the lower-order nonlinearities

such that the variation of the system amplitude becomes highly sensitive to the control

parameter at the bifurcation regime. We further incorporate a slowly varying coupling
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term to the acoustic driving to obtain the phenomenon of large amplitude bursting.

5.2 MODELLING CANARD EXPLOSION IN THERMOACOUSTIC SYSTEM

The dynamics of the canard explosion presented in the above experiments is mainly

associated with the change in the amplitude of the acoustic pressure fluctuations as the

parameter is varied. Therefore, one can consider the mathematical model discussed in

Chapter 2, which is given as,

¥𝜂 +
(
𝜇6𝜂

6 + 𝜇4𝜂
4 + 𝜇2𝜂

2 − 𝜇0

)
¤𝜂 + 𝜔2𝜂 + 𝜉 = 0, (5.1)

We note that the coefficients 𝜇2, 𝜇4 and 𝜇6 govern the stability and the amplitude of the

LCO branches in the bifurcation curve. Now, the dynamics of the canard explosion is

such that the amplitude of the system becomes highly sensitive to a narrow range of

parameters near the bifurcation regime. To achieve this, one can reduce the value of the

coefficients coupled with the terms
(
𝜇6𝜂

6 + 𝜇4𝜂
4 + 𝜇2𝜂

2) . Therefore, we multiply all

the nonlinear coefficients with a constant 𝜖 ≪ 1, reducing the strength of nonlinearity

associated with the nonlinear terms. Such systems with reduced strength of nonlinearity

are referred to as weakly nonlinear oscillators (Strogatz, 2018). The modified equation

with the coupling term 𝜖 is written as,

¥𝜂 + 𝜖

(
𝜇6𝜂

6 + 𝜇4𝜂
4 + 𝜇2𝜂

2
)
¤𝜂 − 𝜇0 ¤𝜂 + 𝜔2𝜂 = 0. (5.2)

To visualise the effect of the magnitude of 𝜖 , the dynamics of the envelope of the

fluctuations is obtained from the harmonic oscillator Eq. (5.2), using the method of

averaging (Balanov et al., 2009; Strogatz, 2018). We substitute the acoustic variable

to be of the form 𝜂(𝑡) = 𝐴(𝑡)𝑐𝑜𝑠[𝜔𝑡 + Ω(𝑡)]. Here, 𝐴(𝑡) and Ω(𝑡) represent the

amplitude-envelope and its phase, respectively. The evolution time scale of 𝐴(𝑡) and

Ω(𝑡) is much slower than the faster times scale of system 2𝜋/𝜔. Thus, after substituting
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Figure 5.5: (a-d) Representation of the effects of 𝜖 on the evolution of the solutions for
Eq. (5.3), which is of the form ¤𝐴 = 𝑓 (𝜇0, 𝐴) − 𝑓 (𝐴3, 𝐴5, 𝐴7). The ordinate
denotes the values of 𝑓 (𝐴3, 𝐴5, 𝐴7) (thick orange curve), and the abscissa
represents the values of 𝐴. The contributions from 𝐴3, 𝐴5, and 𝐴7 are
presented in the coloured thin solid curves. The dashed blue lines represent
the control parameter curve 𝑓 (𝜇0, 𝐴) for 𝜇0 = 0 and 1. Geometrically, the
solutions are the points of intersections of 𝑓 (𝐴3, 𝐴5, 𝐴7) and 𝑓 (𝜇0, 𝐴). (e)
Bifurcation diagram to represent the effect of 𝜖 on the continuous bifurcation
curve obtained by fixing 𝜇2 = 6.7, 𝜇4 = −0.5, and 𝜇6 = 0.01. The variation
of 𝜇0 is shown on the abscissa and the solutions of Eq. (5.3) are shown on the
ordinate. In the bifurcation diagram, thick lines are for stable solutions and
the broken line is for unstable solutions. Notice that as 𝜖 is decreased from
1 to 0.001, the range of parameters to reach the high amplitude oscillations
after the bifurcation decreases to a very narrow span.

𝜂(𝐴,Ω) and averaging Eq. (5.2) over the faster time scale 2𝜋/𝜔 (Balanov et al., 2009),

the dynamics of the amplitude-envelope of the oscillations is obtained as,

¤𝐴 =
𝜇0
2
𝐴 − 𝜖

(
𝜇2
8
𝐴3 + 𝜇4

165
𝐴5 + 5𝜇6

128
𝐴7

)
. (5.3)

We note that the evolution of the amplitude-envelope is a function ¤𝐴 = 𝑓 (𝜇0, 𝐴) −

𝑓 (𝐴3, 𝐴5, 𝐴7), which is dependent on the control parameter 𝜇0 and the damping term

𝑓 (𝐴3, 𝐴5, 𝐴7). The nonlinear damping term 𝑓 (𝐴3, 𝐴5, 𝐴7) is in turn a function of the

higher order terms 𝑓 (𝐴3), 𝑓 (𝐴5) and 𝑓 (𝐴7). The solutions for Eq. (5.3) are computed

as ¤𝐴 = 0, which are obtained by balancing 𝑓 (𝜇0, 𝐴) = 𝑓 (𝐴3, 𝐴5, 𝐴7) (Strogatz, 2018).
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We proceed with considering a case of continuous bifurcation obtained by setting

𝜇2 = 6.7, 𝜇4 = −0.5, and 𝜇6 = 0.01. In Fig. 5.5(a-d), the effect of 𝜖 on the evolution

of solutions for Eq. (5.3) is represented. These solutions are, geometrically, the points

of intersections of the curves 𝑓 (𝜇0, 𝐴) and 𝑓 (𝐴3, 𝐴5, 𝐴7). The thick orange line

represents the curves for 𝑓 (𝐴3, 𝐴5, 𝐴7), which is a summation of contributions from

𝑓 (𝐴3), 𝑓 (𝐴5) and 𝑓 (𝐴7) represented with thin lines. The curves for 𝑓 (𝜇0, 𝐴), at 𝜇0 = 0

and 𝜇0 = 1, are shown in dotted blue lines. 𝑓 (𝜇0, 𝐴) is a line passing through the

origin where 𝜇0 is its slope. Thus, several curves for 𝑓 (𝜇0, 𝐴) with varying slopes

are obtained as 𝜇0 is varied as a control parameter, not shown here in the interest of

space. From Fig. 5.5(a,b), for the lower values of 𝐴, it is noted that the dynamics of the

curve 𝑓 (𝐴3, 𝐴5, 𝐴7) (orange line) is mainly contributed from 𝑓 (𝐴3) and 𝑓 (𝐴5). One

can also note that as the value of 𝜖 decreases from 1 to 0.001, the absolute value of the

functions (| 𝑓 (𝐴3) |,| 𝑓 (𝐴5) |, and | 𝑓 (𝐴7) |) decreases, and their curves tend towards the

abscissa (cf. Fig. 5.5a-d). The effect of the decrease in 𝜖 , for smaller amplitudes of 𝐴,

is more pronounced on the lower order nonlinear terms 𝑓 (𝐴3) and 𝑓 (𝐴5) than on the

highest order term 𝑓 (𝐴7) (cf. Fig. 5.5a-d). This influence of 𝜖 on the nonlinear terms

collectively transforms the curve 𝑓 (𝐴3, 𝐴5, 𝐴7) to have lower slopes for an extended

value of 𝐴 (compare the orange lines of Fig. 5.5a-d). Thus, the transformation results in

a scenario where one observes a rapid change in the value of solutions, the intersection

of 𝑓 (𝐴3, 𝐴5, 𝐴7) and 𝑓 (𝜇0, 𝐴) (cf. Fig. 5.5c,d), for a minute change in the value of the

parameter 𝜇0 in the range |𝜇0 | < 1.

In Fig. 5.5(e), we plot the bifurcation curves for the cases of 𝜖 = 1, 0.1, 0.01, and

0.001 obtained by varying the control parameters in the range of −20 ≤ 𝜇0 ≤ 30. As

𝜖 is reduced, it is noticed that the bifurcation curve significantly steepens at the Hopf

point 𝜇0 = 0 (refer to Fig. 5.5e). In other words, the range of values of 𝜇0 to reach the

saturation in the rise in amplitude decreases to a very narrow span (refer to the inset of

Fig. 5.5e). The steepening of the transition curve occurs due to the higher reduction in

the nonlinearity of lower-order nonlinear terms for lower amplitudes 𝐴, which otherwise
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form a continuous bifurcation (refer to the curve 𝜖 = 1, in Fig. 5.5). From Fig. 5.5(a-d),

we convey that the effect of 𝜖 is less on the highest-order nonlinear term 𝜂6 when

compared to the lower-order nonlinear terms in Eq. (5.2). Thus, the coupling term 𝜖 aids

in obtaining a weakly nonlinear oscillator exhibiting a transition with a canard explosion

at the Hopf point.

Figure 5.6: Representation of the canard explosion by numerically integrating Eq. (5.2).
The curves represent the variation of 𝜂𝑟𝑚𝑠 as a function of 𝜇𝑜. When the
control parameter 𝜇𝑜 is varied in steps of 1, we notice an abrupt jump in (a)
the bifurcation diagram. The abrupt nature of the transition is due to a lack
of resolution in the variation of the control parameter. The abrupt jump is
also evident from the amplitude of the time series (a1) before and (a2) after
the transition. However, when we vary the control parameter in finer steps,
we have (b) stable dynamics at each of these finer steps. Thus, the model
captures a rapid continuous transition (b1-b3), where the amplitude rises
significantly with a negligible change in 𝜇0.

Further, utilising 4th order Runge-Kutta method, we numerically integrate Eq. (5.2)

by fixing 𝜖 = 0.0001 for a range of control parameter −40 ≤ 𝜇0 ≤ 50 to obtain the

bifurcation diagram. Figure 5.6a denotes the bifurcation curve when the control parameter

𝜇𝑜 is varied in steps of 1. Since there is a significantly steeper rise, the transition appears

to be abrupt at the Hopf point 𝜇0 = 0 due to a weaker resolution in the variation of
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the control parameter. This seemingly abrupt transition is what we notice during the

experiments as the system transitions to high-amplitude thermoacoustic instability (refer

to Fig. 5.1a). We further illustrate that, by increasing the resolution at the canard

explosion regime, the system exhibits the stable LCO at every small variation in 𝜇0,

implying a continuous rapid transition (refer to Fig. 5.6b).

Further, the experimental data denotes that the temperature fluctuations of the hot gas

vary in correlation with the bursting amplitude at a slower time scale (compared to

system oscillations) (refer to Fig. 5.4). This variation of the temperature fluctuations

suggests that there is an additional parameter that fluctuates at a timescale slower than

the thermoacoustic oscillations during the state of bursting. When such an oscillating

term is coupled with the driving term ¤𝜂, the system exhibits bursting oscillations at the

bifurcation regime (Kasthuri et al., 2019). We illustrate the bursting phenomenon for an

underlying canard explosion in the following subsection.

5.2.1 Bursting behaviour due to underlying canard explosion

The amplitude of the bursts corresponding to an underlying canard explosion is very

high due to the sudden nature of the transition at the bifurcation regime. Experimentally,

we observed that a system parameter (𝑇 ′) fluctuates at a slower time scale (compared to

system oscillations) at the bifurcation regime of the canard explosion (refer to Fig. 5.4).

Such parametric oscillations are also reported in past studies of thermoacoustic systems

(Kasthuri et al., 2019; Tandon et al., 2020). Kasthuri et al. (2019) has shown that

the temperature near the flame holder oscillates at a much slower time scale than the

thermoacoustic oscillations during the state of bursting. In a turbulent combustor with

a swirler configuration, Hong et al. (2008) showed that there is a fluctuation in the

equivalence ratio during the state of large amplitude bursting. Tandon et al. (2020)

replicated the bursting dynamics of the low-turbulence systems using a phenomenological

model containing slow-fast time scales. In line with the conjectures of these studies,

one would intuitively expect large amplitude bursting oscillations in a system containing
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slow-fast time scales across the canard explosions. Inspired by these studies, we further

illustrate the effect of the fluctuation of the system parameter at the bifurcation regime of

a canard explosion; for that, we couple the driving term ¤𝜂 with a periodic oscillation of a

very low frequency 𝜔𝑞 with a coupling strength of 𝑞. Thus, Eq. (5.2) is further modified

as,
¥𝜂 + 𝜖

(
𝜇6𝜂

6 + 𝜇4𝜂
4 + 𝜇2𝜂

2
)
¤𝜂 − 𝜇0 ¤𝜂

−[𝑞 sin(𝜔𝑞𝑡) + 𝜉𝑚] ¤𝜂 + 𝜔2𝜂 + 𝜉𝑎 = 0.
(5.4)

The coupling is added with the multiplicative noise 𝜉𝑚 to model the fluctuations associated

with the driving as a result of the internal noise in the system (Clavin et al., 1994). We

also add additive white noise 𝜉𝑎 to the Eq. (5.4) to incorporate the effect of turbulence

(Noiray, 2017). Here, 𝜉 is the white noise defined as ⟨𝜉𝜉𝜏⟩ = Γ𝛿𝜏, where Γ is the noise

intensity. The subscripts ‘𝑚’ and ‘𝑎’ denote the correspondence to multiplicative and

additive noise, respectively. We further note an alternate description for the coupling

added here can also be viewed as an oscillating parameter with the noise, which can be

written as (𝑞 sin (𝑤𝑡) + 𝜉𝑚) ¤𝜂.

The qualitative nature of the bursting behaviour obtained from the model for different

types of combustors is represented in Fig. 5.7. At 𝜇0 = 0, fixing 𝑞 = 0, Γ𝑎 = 105 and

Γ𝑚 = 104, we obtain the bursting behaviour that matches with the time series obtained

from the bluff body stabilized dump combustor (refer to Fig. 5.7a). The irregularity in

the bursting pattern is due to the multiplicative noise 𝜉𝑚 associated with the driving term

¤𝜂. When we fix 𝜔 = 370 rad/s, 𝜔𝑞 = 3 rad/s, 𝑞 = 20 rad/s, Γ𝑎 = 105 and Γ𝑚 = 104,

we obtain a bursting pattern observed in the swirl stabilized dump combustor (refer to

Fig. 5.7b).

Further, upon fixing 𝜔 = 370 rad/s, 𝜔𝑞 = 0.5 rad/s, 𝑞 = 20 rad/s, Γ𝑎 = 107 and Γ𝑚 = 105,

we obtain a bursting pattern observed in the annular combustor (refer to Fig. 5.7b). The

coupling oscillation frequency 𝜔𝑞 for the case of an annular combustor is lesser than that

of the swirler stabilized dump combustor. Hence, the bursts in the annular combustor
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Figure 5.7: Representation of the time series for bursting behaviour at the bifurcation
regime of the canard explosion, obtained by numerical integration of Eq. (5.4).
(a) Time series analogous to the bursting behaviour of a bluff body stabilized
dump combustor. (b) Time series analogous to the bursting behaviour of a
swirl stabilized dump combustor. (c) Time series analogous to the bursting
behaviour of an annular combustor. We notice large amplitude bursts at the
bifurcation regime due to the underlying canard explosion

are of longer duration. Thus, using these results from the model we illustrate that

large amplitude bursts are observed in turbulent combustors when a system parameter

fluctuates at the bifurcation regime of an underlying canard explosion.

5.3 CONCLUDING REMARKS

In summary, we reported the experimental evidence for the occurrence of canard explosion

in three different turbulent thermoacoustic systems—a bluff body and a swirl-stabilized

dump combustor, and a swirl-stabilized annular combustor. The transition appears

discontinuous when there is a lack of resolution in the variation of the control parameter.

Though the rise in the magnitude of the fluctuations is steep in nature, unlike abrupt

transitions, the canard explosion in this study exhibits no hysteresis. When such a

transition involves a parameter fluctuation at the bifurcation regime, the system is bound
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to exhibit bursting behaviour with large amplitude bursts. We experimentally showed

that the state of the bursting, in the regime of canard explosions, consists of very high

amplitude fluctuations amidst low amplitude fluctuations.

It is important to note that according to past studies, in this rapid transition, small

oscillations emerge from a Hopf bifurcation to large relaxation-type oscillations

characterized by alternating slow and fast phases. A family of periodic orbits can be

observed following a segment of the unstable inner branch of the critical manifold for a

significant duration. These trajectories are known as canard orbits, giving rise to the

term canard explosion (Eckhaus, 1983). The transitions described in our experimental

results don’t involve the relaxation oscillations as the traditional literature on the canard

explosions describes. However, we note that the transition is steep and continuous in

nature. We also observe that a low-amplitude oscillatory state emerges from a very

low-amplitude aperiodic state, which can be related to the Hopf bifurcation analogy

(please refer to A.1). Moreover, a peculiar type of bursting that has an amplitude of

bursts ranging from low amplitude limit cycle to high amplitude limit cycle oscillation is

observed, and they occur at the rapid transition regime. The appearance of the bursts

having high and low amplitude periodic oscillations hints towards an underlying rapid

continuous transition.
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CHAPTER 6

TRANSITIONS IN AEROACOUSTIC SYSTEMS

Oscillatory instabilities are a common phenomenon in fluid flows, often accompanied by a

high degree of coherence in turbulent reactive flows. For instance, during thermoacoustic

instability, large coherent structures emerge within the turbulent flow (Sujith and Unni,

2020). This behaviour is an indication of the characteristics of complex systems. The

self-organization in turbulent flow leads to the development of an ordered acoustic

field and large coherent structures, all occurring without any need for external forcing.

Emergence is a key feature of complex systems. The approaches and techniques from

complex system theory used to study thermoacoustic instabilities can similarly be applied

to examine flow-induced oscillatory instabilities in other fluid dynamic systems. Thus,

in the spirit of complex systems, the current thesis explores the commonality of the

transitions in fluid flows of thermoacoustic and aeroacoustic systems.

Now, we shift our focus to an aeroacoustic system where the acoustic field is influencing

the acoustic source. However, unlike thermoacoustic systems, the energy component for

acoustic power does not include heat release rate fluctuations in aeroacoustic systems. The

source of acoustic power in these aeroacoustic systems originates from the hydrodynamic

flow instabilities involving turbulent shear layers and vortex shedding. Self-sustained

aeroacoustic oscillations arising from the interactions between the hydrodynamic and

acoustic fields are perceived as a whistle. Such whistling can lead to large amplitude

acoustic oscillations that have disastrous consequences for engineering systems such as

large segmented solid rocket motors and large gas pipelines. The whistling corresponds to

the state of limit cycle oscillations (LCO) in dynamical systems theory. An aeroacoustic

The results presented in this chapter are published in Bhavi, R. S., Pavithran, I., and Sujith, R. I. (2024),
Dynamical states associated with the shift in whistling frequency in aeroacoustic system, Journal of
Sound and Vibration, 592, 118606. https://doi.org/10.1016/j.jsv.2024.118606

https://doi.org/10.1016/j.jsv.2024.118606


system exhibits different dynamical states when the bulk flow velocity is varied as a

control parameter. Understanding the dynamical states and the transitions between them,

as the control parameter is varied, is crucial in designing control strategies for such

aeroacoustic oscillations. The past studies have shown that as the control parameter

varies, in an aeroacoustic system that has a flow through orifices, the whistling frequency

shifts.

In this chapter, it is shown that such a change in frequency occurs via three different

scenarios: (1) direct transition between the two LCOs as an abrupt transition, (2) via

a state of intermittency, and (3) via a state of aperiodicity. In the current aeroacoustic

system, the abrupt transition between the LCOs is manifested as a bursting behaviour

where the amplitude of the acoustic pressure fluctuations abruptly switches between

high and low-amplitude LCOs. Further, the current study shows that the dynamical state

and the transition between them during the frequency shift have a correlation with the

magnitude of the frequency shift. Using recurrence theory we show that there is a change

in the dynamical state of the system during the frequency shift. Further, synchronisation

analysis is used to investigate the coupled behaviour of the velocity (𝑢′) and the acoustic

pressure (𝑝′) fluctuations during the different dynamical states. Our findings imply that

𝑢′ and 𝑝′ exhibit phase synchronisation (PS) during the state of LCO, corresponding

to whistling. In contrast, 𝑢′ and 𝑝′ are desynchronised during the state of aperiodicity,

corresponding to stable operation. Furthermore, the bursts of periodic oscillations during

intermittency correspond to the phase-synchronised epochs of periodic 𝑢′ and 𝑝′, and

the aperiodic epochs correspond to the desynchronised aperiodic 𝑢′ and 𝑝′.

6.1 DYNAMICAL STATES ASSOCIATED WITH SHIFTS IN WHISTLING

FREQUENCY

To investigate the dynamical states in the aeroacoustic system, 𝑅𝑒 is increased by changing

the inlet airflow rate. Figure 6.1a shows the changes in the root mean square value (rms)
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of the acoustic pressure fluctuations 𝑝′rms as 𝑅𝑒 is increased. As 𝑅𝑒 is increased from

4,000 to 12,700, a rise and fall in the value of 𝑝′rms attaining successive maxima followed

by minima is observed.

Figure 6.1b shows the corresponding changes in the dominant frequency (whistling

frequency) of 𝑝′ with 𝑅𝑒. The dominant frequency from the amplitude spectrum of the

acoustic pressure fluctuations is computed using the fast Fourier transform (FFT). The

resolution of the amplitude spectrum considered here is 0.2 Hz. A switch in dominant

frequencies from 461 to 411, 443 to 535, 535 to 411, and 445 to 470 Hz is observed

when the value of 𝑅𝑒 crosses the values 5, 100, 7, 500, 8, 300, and 12, 000, respectively;

please refer to the intersection regime of R1-2, R2-3, R3-4, and R4-5 in figure 6.1(a, b).

A detailed view of the amplitude spectrum during the frequency shifts is represented in

the waterfall plots of figure 6.1e-h. In the following subsections, the different routes of

frequency shifts and the associated dynamical states observed in the aeroacoustic system

as 𝑅𝑒 increases beyond 4,000 are described.

Transition via the state of intermittency

The change in the value of 𝑝′rms begins from a local minimum at 𝑅𝑒 = 4, 000 ± 101

(Fig. 6.1a), where the value of 𝑝′rms is approximately equal to 1 Pa. Upon increasing

𝑅𝑒, 𝑝′rms gradually increases to a local maximum at 𝑅𝑒 = 5, 100 ± 110 (marked as i in

Fig. 6.1a). We observe the state of LCO (Fig. 6.1c-i) at this local maximum (𝑝′rms = 9.5

Pa). With further increase in 𝑅𝑒, the value of 𝑝′rms decreases to a second local minimum

(𝑝′rms = 1.7 Pa, marked as ii in Fig. 6.1a). This transition from a local maximum to a local

minimum is accompanied by a shift in the dominant frequency of 𝑝′ (Fig. 6.1e) from

461 to 411 Hz. We observe that this frequency shift occurs via the state of intermittency

(Fig. 6.1c-ii), which is characterized by bursts of periodic oscillation amidst epochs of

aperiodicity. We also observe the states of intermittency during the subsequent frequency

shifts, which are shown in Appendix B.2. The value of 𝑝′rms further increases, with

increasing 𝑅𝑒, to a subsequent higher local maximum (𝑝′rms = 46.6 Pa, marked as iii in
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Fig. 6.1a) when the value of 𝑅𝑒 equals 7, 500 ± 129. The dynamical state corresponding

to this local maximum is an LCO, as shown in figure 6.1c-iii.

Upon further increasing 𝑅𝑒 beyond 7,500, we note a sudden dip in the value of 𝑝′rms

from 46 to 8.5 Pa. This decrease is accompanied by a shift in dominant frequency from

443 to 535 Hz (Fig. 6.1f and the interface of the region R2 & R3 in Fig. 6.1b). We

again note that the switch in the dominant frequency occurs via a state of intermittency

(refer to Fig. B.2a of Appendix B.2). With a further increment of 𝑅𝑒, a similar trend

of rise in 𝑝′rms is observed, reaching a local maximum and subsequently decreasing to

a minimum with a change in the dominant frequency of 𝑝′ fluctuations from 535 to

411 Hz (Fig. 6.1g). During this frequency shift, we found that the transition occurs

via the state of intermittency (refer to Fig. B.2c of Appendix B.2). Thus, when 𝑅𝑒

is increased from 4, 000 to 9, 200, we have shifts in whistling frequency between the

regions R1-R2, R2-R3, and R3-R4 (Fig. 6.1b). During these frequency shifts, we observe

that the dynamical state is intermittency. When the value of 𝑅𝑒 is varied beyond 9,200,

the transition associated with the shift in whistling frequency changes and we describe

this observation in the following subsection.

Abrupt transition between states of limit cycle oscillations

When we varied 𝑅𝑒 beyond 9, 200, the value of 𝑝′rms increases to a higher 𝑝′rms of 170

Pa at 𝑅𝑒 ≈ 12, 000 ± 165; here we observe that the dynamical state is LCO. With the

continued increase in the value of 𝑅𝑒, we observe an abrupt jump to another state of LCO

having a lower amplitude with the value of 𝑝′rms = 60 Pa (marked as iv & v in Fig. 6.1a).

The time series corresponding to the abrupt transition are shown in figure 6.1d. This

abrupt jump is accompanied by a slight frequency shift from 445 to 470 Hz (Fig. 6.1h).

However, when we further investigated this abrupt transition by varying the control

parameter in finer steps of 𝑅𝑒 = 70 at the bifurcation regime, a bursting phenomenon is

observed (Fig. 6.2). We observe that the state of the system switches between the LCOs

of rms values 170 Pa and 60 Pa (Fig. 6.2b, c, d).
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Figure 6.1: (a) rms of the acoustic pressure oscillations 𝑝′rms (Pa) as a function of 𝑅𝑒.
The corresponding average flow velocity �̄� (m/s) of the airflow across the
orifice is marked on the top abscissa. (b) The dominant whistling frequency
of 𝑝′ as 𝑅𝑒 is varied. The regions corresponding to the particular dominant
frequency of 𝑝′ signal are categorized as R1, R2, R3, R4, and R5. The shifts
in dominant frequency are observed as 𝑅𝑒 is varied. (c) The time series
corresponding to the transition via the state of intermittency during the shift
in whistling frequency from 461 to 411 Hz; (ci) LCO, (cii) intermittency, and
(ciii) LCO. (d) Time series of LCOs corresponding to the abrupt transition
from one LCO to another (transition from point iv to v, marked in 𝑝′rms
variation) with a slight shift in dominant frequency. (e-h) Waterfall diagram
of the amplitude spectrum for a particular range of 𝑅𝑒 during the shift in
dominant frequency from regions R1-2, R2-3, R3-4, and R4-5.
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Figure 6.2: Representation of the state of bursting, having sudden shifts between high and
low-amplitude LCOs during the frequency shift. (a) Variation of 𝑝′rms with
𝑅𝑒. (b) The times series of 𝑝′ corresponds to the state of abrupt switching
between the high and low-amplitude LCOs. (c) The zoomed-in view of the
high-amplitude LCO and its corresponding amplitude spectrum. (d) The
zoomed-in view of the low-amplitude LCO and its corresponding amplitude
spectrum.

In contrast to the state of intermittency, where switching occurs between periodic and

aperiodic states, here, we observe switching between two periodic states of different

amplitudes, which manifests as a bursting phenomenon. We conjecture that the abrupt

switching dynamics is due to the fluctuations in the strength of the lock-in phenomenon

between the acoustic and hydrodynamic modes caused by the turbulence. Moreover, the

sudden occurrence of high-amplitude LCOs amidst the low-amplitude LCOs indicates

an underlying abrupt transition.

We note that 𝑝′rms continues to decrease with a further increase in 𝑅𝑒 beyond 12,000.

Hence, we further varied 𝑅𝑒 until 21,000 to investigate the subsequent dynamical state

that the system exhibits. In the following subsection, we list the observed dynamical

states with further increase in 𝑅𝑒.
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Transition via the state of aperiodic oscillations

Figure 6.3 represents the occurrences of the dynamical states for the variation of 𝑅𝑒

beyond 12,600. As 𝑅𝑒 increases, the system exhibits a state of intermittency for the range

of 𝑅𝑒 varying from 14,700 to 15,500 (refer to Fig. 6.3a, b, c). With further increase in

𝑅𝑒 beyond 16,300, a state of aperiodicity is observed (refer to Fig. 6.3a, b, d). One can

also note that, for 𝑅𝑒 ≥ 13,000, the amplitude spectrum changes from having a sharp

peak at 540 Hz to a broadband nature (refer to the waterfall diagram of Fig. 6.3b). Upon

continuation with the increase in 𝑅𝑒, the state of intermittency is encountered again,

which extends to the range 𝑅𝑒 varying from 18,200 to 18,600 (Fig. 6.3b, e). With a

further increase in 𝑅𝑒 beyond 18,600, the system enters the state of LCO corresponding

to the frequency 920 Hz (Fig. 6.3 a, b, f).

Thus, from figure 6.1, it is observed that the aeroacoustic system exhibits a state of

intermittency during the frequency shifts for the control parameter 𝑅𝑒 in the range of

4,000 to 8,600. However, for 𝑅𝑒 values greater than 8,600, an abrupt transition from one

LCO to another LCO is observed during the frequency shift. For the values of 𝑅𝑒 beyond

16,000, the state of aperiodicity is observed during the frequency shift (Fig. 6.3). These

are indeed different routes associated with the shift in whistling frequency. The observed

dynamics arises due to the coupled interactions between the velocity fluctuations (𝑢′) and

the acoustic fluctuations (𝑝′). Hence, a further investigation of the coupled behaviour of

𝑢′ and 𝑝′ is performed in the following subsection.

6.1.1 The phenomenon of lock-in between the acoustic and hydrodynamic modes

The vortex shedding process from the orifice has different hydrodynamic modes based

on 𝑅𝑒 (Nomoto and Culick, 1982; Huang and Weaver, 1991). The lock-in between the

vortex shedding and the acoustic modes leads to the whistling phenomenon. There is a

gradual desynchronisation of the hydrodynamic mode from the acoustic mode, which

results in a decrease in the whistling sound as the control parameter 𝑅𝑒 increases. In

order to illustrate this gradual decrease in the strength of lock-in, the joint recurrence
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Figure 6.3: Representation of the state of aperiodicity when there is no lock-in between
the acoustic and hydrodynamic modes. (a) Variation of 𝑝′rms for the range
of 𝑅𝑒 varying from 13,000 to 20,000 and the corresponding (b) waterfall
plot to show the variation of the amplitude spectrum with 𝑅𝑒. The mint
blue coloured patches represent (𝑅𝑒 = 14,700-15,500 and 18,200-18,600)
the states of intermittency. The pastel red patch denotes (𝑅𝑒 = 15,500 to
18,200) the aperiodic state, where the amplitude spectrum is a broad band in
nature. A large shift in frequency from 540 Hz to 920 Hz is observed for a
transition via the state of aperiodicity. The time series for the states of (c)
intermittency, (d) aperiodicity, (e) intermittency, and (f) LCO.
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Figure 6.4: Representation of the variation of 𝐷𝐸𝑇𝑗 and 𝑝′rms as a function 𝑅𝑒 (a) for the
range of 𝑅𝑒 varying from 4,000 to 13,000 where the states of intermittency
and abrupt transition is observed; (b) The corresponding variation in the
dominant frequency. The variation of 𝐷𝐸𝑇𝑗 and 𝑝′rms with 𝑅𝑒 (c) for the
range of 𝑅𝑒 varying from 14,000 to 21,200 where we observe the states of
aperiodicity, and (d) the corresponding variation in the dominant frequency.
We observe a decrease in the values of 𝐷𝐸𝑇𝑗 during the frequency shifts
for the state of intermittency and the state of aperiodicity (in the brown
background). A very negligible change in 𝐷𝐸𝑇𝑗 is observed during the
abrupt transition between the LCOs at 𝑅𝑒 ≈ 13, 000
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quantification measure, Determinism 𝐷𝐸𝑇𝑗 (refer to Section Section 2.3), between the

signals from the microphone and the hot film probe is computed at each of the control

parameter values 𝑅𝑒. 𝐷𝐸𝑇𝑗 is 1 when the signals are phase-locked in the time domain

and is zero when there is no phase synchrony between the signals.

Figure 6.4 indicates the variation in 𝐷𝐸𝑇𝑗 as a function of 𝑅𝑒. The variation of 𝑝′rms

along with 𝐷𝐸𝑇𝑗 is also plotted. For the transitions via the states of intermittency during

the frequency shifts (4, 000 ≤ 𝑅𝑒 ≤ 12, 000), we observe that the variation in 𝐷𝐸𝑇𝑗

decreases to a local minimum and then subsequently increases (shown in light blue

patches of Fig. 6.4a). A very negligible change in 𝐷𝐸𝑇𝑗 is noticed during the abrupt

transition between the two LCOs (𝑅𝑒 ≈ 12, 000). This observation is expected as there

is a lock-in between the acoustic and the hydrodynamic modes during the states of LCO.

However, for the transitions via the states of intermittency, the decrease in 𝐷𝐸𝑇𝑗 implies

that the acoustic and the hydrodynamic modes begin to lose the strength of lock-in

between them. The decrease in the strength of lock-in results in the system approaching

the state having a very low sound pressure level (Nomoto and Culick, 1982). We also

compute 𝐷𝐸𝑇𝑗 for the transition involving the state of aperiodicity (refer to Fig. 6.4

(c)). We observe that 𝐷𝐸𝑇𝑗 decreases as 𝑅𝑒 increases and has the lowest values for the

aperiodic region when compared to the regions of intermittency. For further increase in

𝑅𝑒 > 18, 300, 𝐷𝐸𝑇𝑗 again increases.

Further, an increase in 𝐷𝐸𝑇𝑗 is observed if the subsequent lock-in region is near the

existing value of the control parameter 𝑅𝑒. The increase in 𝐷𝐸𝑇𝑗 , as 𝑅𝑒 increases,

indicates the beginning of the lock-in of the subsequent hydrodynamic and acoustic

modes. However, the flow through the orifice also has fluctuations in velocities due

to turbulence (Kamin et al., 2019), which can create variations in the strength of the

lock-in between the hydrodynamic and acoustic modes. We observe low-amplitude

aperiodic fluctuations of acoustic pressure when the modes are not locked. However, if

the frequency of the hydrodynamic mode is close to the frequency of the duct acoustic
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mode, there is a sporadic response from the shear layer separation process to form a

larger vortex to give rise to a periodic epoch (Kamin et al., 2019). This occasional

response of the shear layer manifests as fluctuations in the strength of the lock-in process.

Thus, the fluctuations in the strength of the lock-in give rise to the state which has the

imprints of periodicity amidst aperiodicity in the acoustic pressure fluctuations. Such

a state having periodic epochs amidst aperiodic regimes corresponds to the state of

intermittency (Kamin et al., 2019).

Further, we observe a trend in the magnitude of the shift in the whistling frequency

associated with these three routes, which are intermittency, abrupt switching between

LCOs, and aperiodicity. In these three cases, the manner in which lock-in between

acoustic and hydrodynamic modes occur is different. We observe that the magnitudes of

the shift in frequency during the transition via intermittency are 50, 90 and 125 Hz, which

are relatively high compared to the frequency shift (25 Hz) during the state of abrupt

switching between the LCOs. For a relatively small frequency shift, the control parameter

𝑅𝑒 values for the lock-in region of current and the subsequent modes are nearby, thus

allowing the subsequent modes to lock-in before even the system loses the strength of

lock-in from the current modes. Hence, we observe the abrupt switching between the two

LCOs, which manifests as bursting. In the case of transition via intermittency, the shift in

frequency is larger, implying that 𝑅𝑒 values between the two lock-in regions are far apart.

Thus, when the shift in frequency is large, the system continues to lose the strength of

lock-in between the current modes to reach the aperiodic state and then followed by the

beginning of lock-in of the subsequent modes. In the case of frequency shift occurring

via the state of aperiodicity, the shift is 380 Hz (refer to Fig. 6.3a,b). This frequency shift

is significantly larger than the frequency shifts for the state of intermittency (125 Hz) and

abrupt transition (25 Hz). Thus, the control parameter (𝑅𝑒) values for lock-in regions are

significantly far apart when we observe the state of aperiodicity.

Motivated by these findings, we utilize a visualization technique based on the theory of
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recurrence (Marwan et al., 2007) to characterize the dynamical states of intermittency,

LCO and aperiodicity in the following subsections. Further, the high values of 𝐷𝐸𝑇𝑗

during the state of LCO and the lowest value of 𝐷𝐸𝑇𝑗 during the state of aperiodicity

indicate that there is a variation in the synchrony between the dynamics of 𝑢′ and 𝑝′.

Thus, we study the behaviour of 𝑢′ and 𝑝′ variables in the purview of synchronisation

analysis in the subsequent sections.

6.1.2 Characterizing the dynamical states using recurrence

Figure 6.5 represents the plots for the recurrence matrix obtained for 𝑝′ oscillations

for the state of intermittency at 𝑅𝑒 ≈ 5, 100, the state of abrupt switching between the

LCO at 𝑅𝑒 ≈ 12, 000, and the state of aperiodicity at 𝑅𝑒 ≈ 16, 800. For the state of

intermittency, the phase space is reconstructed with an embedding dimension of 𝐷 = 7

and an optimum delay of 𝜏𝑜𝑝𝑡 = 0.7 ms; For LCO, 𝐷 is 5 and 𝜏𝑜𝑝𝑡 is 0.5 ms. The

recurrence matrix is obtained based on choosing a fixed value for the threshold 𝜖 = 𝜆/5,

where 𝜆 is the highest span between the pairs of locations of the trajectory in phase

portrait (Marwan et al., 2007). For the state of intermittency, the recurrence plot is seen

to have perforated black patches among white regions (Fig. 6.5a). The occurrence of

black patches in RP is due to the regime of low-amplitude aperiodic oscillations of the

state of intermittency (Kabiraj and Sujith, 2012; Nair et al., 2014). The white patches

correspond to the bursts of periodic oscillations of the state of intermittency (Kabiraj and

Sujith, 2012). Similar observations are made for the intermittency states at 𝑅𝑒 ≈ 7, 500

and 𝑅𝑒 ≈ 8, 400 (refer to Fig. C.1 of Appendix C.1).

The periodic signal has equidistant diagonal lines in the RP. The time period of the

LCO can be computed using the distance between the diagonal lines (Marwan et al.,

2007). Figure 6.5c-d represents the time series and RP for the state of abrupt switching

between the LCOs corresponding to 445 and 470 Hz. We observe that the diagonal

lines corresponding to low-amplitude LCO of 470 Hz are more closely spaced than

the diagonal lines corresponding to the high-amplitude LCO of 445 Hz (refer to the
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Figure 6.5: The plots for 𝑝′ fluctuations and the corresponding recurrence matrix obtained
during (a,b) the state of intermittency (𝑅𝑒 ≈ 5, 100), (c,d) the state of abrupt
switching between the limit cycle oscillations (𝑅𝑒 ≈ 12, 000) and (e,f) the
state of aperiodic oscillations (𝑅𝑒 ≈ 16, 800). The recurrence plots are
plotted based on choosing a fixed value for the threshold 𝜖 = 𝜆/5, where 𝜆

is the maximum diameter of the reconstructed attractor in the phase space.
The recurrence plot for the state of intermittency (b) has black patches,
which correspond to the low amplitude aperiodic oscillations relative to 𝜆.
The recurrence plot for the abrupt switching between the LCOs (d) has the
variation in the spacing between the diagonal lines (zoomed-in view, d),
indicating the temporal switching of frequencies corresponding to LCOs. The
presence of short, broken diagonal lines in the recurrence plots for aperiodicity
(e) indicates the deterministic behaviour of the aperiodic oscillations.
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zoomed-in version of the Fig. 6.5d). The change in spacing between the diagonal lines

indicates that there is a temporal switching between the two states of LCO of different

frequencies. Such an observation in RP, however, a bursting phenomenon between the

silent and period states is also observed in the time series dynamics of thermoacoustic

systems (Kabiraj and Sujith, 2012). The equidistant diagonal lines are also observed

in the recurrence plots for the states of LCO at 𝑅𝑒 ≈ 4, 800, 7,300, 8,100, and 12,200

(Fig. C.1 of Appendix C.1). Further, we also show the RP for the aperiodic state at

𝑅𝑒 = 16, 800 (Fig. 6.5(e,f)). The presence of short, broken diagonal lines indicates

the deterministic behaviour of the aperiodic oscillations. Moreover, the 𝑝′ during the

aperiodic dynamics contains the small epochs of periodic dynamics due to the certain

flow-induced acoustics at chamber resonance and results in the short diagonals lines in

RP (Kabiraj et al., 2015b). The observation indicates the possibility of chaotic dynamics.

However, dedicated tests are required to confirm the dynamics of chaos.

Investigating the change of dynamical states using RQA

The aeroacoustic system exhibits the rich dynamical states and transitions between them

upon varying the control parameter. In order to quantify the changes in the dynamical

states, we extract the information from the topology of the recurrence plot using the

recurrence quantification measure. To obtain and compare the quantifiable measure

across various values of 𝑅𝑒, we fix the threshold 𝜖 to a specific value.

Here, we choose the threshold 𝜖 to be of the size of the attractor corresponding to the

aperiodic state of the intermittency during frequency shift. The size of the attractor

corresponds to the maximum diameter of the reconstructed attractor in the phase space.

We present the variation of 𝑅𝑅 during the shift in whistling frequency in figure 6.6. The

first column represents the variation of 𝑝′rms with 𝑅𝑒 (Fig. 6.6(a-e)-i). The second column

denotes a shift in whistling frequency with 𝑅𝑒 (Fig. 6.6(a-e)-ii). The corresponding

variations in 𝑅𝑅 during the frequency shift are shown in the third column (Fig. 6.6(a-e)iii).
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The plots corresponding to transitions via the state of intermittency are grouped in the

peach-coloured background. We note that as 𝑅𝑒 varies, the curves of 𝑅𝑅 increase and

then decrease (Fig. 6.6(a-c)iii). This observation is due to an increase in the number of

black points in the RP as the system approaches the state of intermittency. The rise in

black dots is attributed to the fact that the pairwise separation length rarely crosses the

threshold 𝜖 during the aperiodic epoch of the state of intermittency. Thus, the curve

of the recurrence measure 𝑅𝑅 rises during the frequency shift. This variation in 𝑅𝑅

confirms the loss of periodicity while the system transits from one whistling frequency

to another.

The plots corresponding to the abrupt switching from one LCO to another LCO are shown

in the green background (Fig. 6.6d). In contrast to the transition via intermittency, we

observe that the values of 𝑅𝑅 are low, and the variation in 𝑅𝑅 is negligible for the abrupt

transition between the two LCOs. This observation is expected since both the states are

of LCO, and the pairwise distance regularly crosses the threshold 𝜖 (Fig. 6.6diii). Further,

the plots corresponding to the transition via the state of aperiodicity are presented in

the light blue shade (Fig. 6.6e). Similar to the transition via the state of intermittency,

during the frequency shift, we observe an increase and subsequent decrease in the value

of 𝑅𝑅 with the control parameter 𝑅𝑒 (Fig. 6.6e-iii). However, the value of 𝑅𝑅 stays at

1 for a range of 𝑅𝑒 (16, 300 to 18, 300), implying that the state of aperiodicity extends

for a larger range of 𝑅𝑒 in comparison to the range of 𝑅𝑒 for the state of intermittency

(Fig. 6.6(a,b,c,e)-iii).

Further, the co-existence of the coupled acoustic and hydrodynamic subsystems in a

confined flow gives rise to the synchronisation between the two. Thus, the synchronisation

strength between the system variables, 𝑢′ and 𝑝′ fluctuations, is an important criterion

for understanding the mechanism through which the observed dynamical states occur

during the frequency shift. Hence, we investigate the coupled dynamics between the two

different variables, 𝑢′ and 𝑝′, of the current system using the theory of synchronisation.
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Figure 6.6: Representation of the variation of the recurrence quantification measure 𝑅𝑅

during the transitions corresponding to the shifts in whistling frequency via
the state of intermittency (peach-coloured box), via an abrupt switching
from one LCO to another LCO (green box), and via the state of aperiodicity
(light blue box). (a-e)i The variation of 𝑝′rms is shown in the first column
(𝑅𝑒 ≈ 4,600–5,500, 7,000–8,000, 7,800–8,600, 11,500–12,500 and 14,000
to 19,800). (a-e)ii The corresponding variation in the dominant frequency 𝑓

is shown in the second column. The shaded region represents the absence
of dominant frequency (eii). The variation in the RQA measure (a-e)iii
recurrence rate 𝑅𝑅 is shown in the third column. The RQA measure is
computed for an embedding dimension of 7 and the optimal 𝜏 of 0.7 ms. At
each control parameter, the signal of length 1,00,000 points is parted into
sections of 5,000 points, and the mean values of RQA are plotted. The error
bar represents the standard deviation. We observe a rise and dip in the value
of the RQA measure 𝑅𝑅 for the transitions via the states of intermittency and
aperiodicity.

102



In the following subsection, we plot joint recurrence matrices to understand the level

of synchronisation between 𝑢′ and 𝑝′ during the states of intermittency, LCO and

aperiodicity.

6.1.3 Investigating the synchronised dynamics of the acoustic and hydrodynamic

field

Figure 6.7 represents the joint recurrence plots (JRP) of the phase trajectories of 𝑢′ and

𝑝′ corresponding to the state of intermittency at 𝑅𝑒 ≈ 5, 100, LCO at 𝑅𝑒 ≈ 12, 000 and

the state of aperiodicity 𝑅𝑒 ≈ 16, 800 (Fig. 6.7a and c). The corresponding time signal

of the acoustic pressure 𝑝′ and velocity 𝑢′ fluctuations are shown in the subfigures b, d,

and f of figure 6.7. The value of 𝜖 is selected such that the recurrence rate (RR) for the

individual recurrence matrix remains fixed, which is 0.1. A simultaneous recurrence of

𝑢′ and 𝑝′ would manifest as a black dot in the JRP. The black dots are sparsely distributed

in an irregular pattern during the desynchronised state due to the aperiodic nature of the

two subsystems. The sparse distribution during the desynchronised state is a result of the

fewer occurrences of the simultaneous recurrences in the trajectories of 𝑢′ and 𝑝′.

During the states of intermittency, we observe the sparsely spaced irregular black patches

due to the aperiodic epochs and the diagonal lines due to the simultaneous recurrence

of the trajectories of periodic epochs of 𝑢′ and 𝑝′ (Fig. 6.7a). During the state of LCO,

we observe that most of the area in JRP is filled with diagonal lines. Note that the

diagonal lines are more pronounced during LCO than during the periodic epochs of

the intermittency (Fig. 6.7c), implying a higher correlation between 𝑢′ and 𝑝′. During

the state of aperiodicity, we observe the sparsely spaced black dots in JRP (Fig. 6.7e),

implying that there is no correlation between 𝑢′ and 𝑝′.

The states of intermittency observed at higher 𝑅𝑒 also exhibit similar JRP structures

(Fig. C.2c, e). The occurrence of diagonal lines in the JRP corresponding to the states

of LCO at 𝑅𝑒 ≈ 4,800, 7,300, 8,100, and 12,200 also depict the high correlation
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Figure 6.7: The representation of the JRP for (a) the state of intermittency at 𝑅𝑒 ≈ 5, 100,
(c) the state of LCO at 𝑅𝑒 ≈ 12, 000 and (e) the state of aperiodicity
𝑅𝑒 ≈ 16, 800. The corresponding signal of 𝑝′ superimposed on 𝑢′ oscillations
during the (b) state of intermittency, (d) LCO and (f) aperiodicity are shown
in the right subfigures. The presence of black dots in the joint recurrence
plots represents the simultaneous recurrence of 𝑢′ and 𝑝′. Diagonal lines are
observed for the simultaneous recurrence of periodic 𝑢′ and 𝑝′; discontinuous
diagonal lines are observed for the weakly coupled phase synchronised
periodic limit cycle oscillations. During the periodic epochs of the state of
intermittency as well, we observe discontinuous diagonals in the JRP. The
density of the black dots is minimum during the desynchronous state of
aperiodicity and the desynchronous epoch of the intermittency as a result
of the very low simultaneous recurrence of 𝑢′ and 𝑝′. A fixed RR of 0.1 is
chosen to compute the recurrence matrix of the individual subsystems.
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between 𝑢′ and 𝑝′ (Fig. C.2a, b, d, f). Thus, from the JRP, we observe that the strength

of synchronisation is high during the states of LCO and is low during the states of

intermittency.

We now quantify the topology of the joint recurrence plots using the RQA measures

recurrence rate 𝑅𝑅𝐽 and determinism 𝐷𝐸𝑇𝐽 . Figure 6.8 represents the changes of

𝐷𝐸𝑇𝐽 and 𝑅𝑅𝐽 with 𝑅𝑒. The first column represents the variation of 𝑝′rms with 𝑅𝑒

(Fig. 6.8(a-e)-i). The second column denotes a shift in whistling frequency with 𝑅𝑒

(Fig. 6.8(a-e)-ii). The corresponding variations in 𝐷𝐸𝑇𝐽 and 𝑅𝑅𝐽 during the frequency

shift are shown in the third and fourth columns, respectively (Fig. 6.8(a-e)iii & iv).

The plots corresponding to transitions via the state of intermittency are grouped in the

peach-coloured background, the abrupt switching between the states of LCO are in the

green background, and the state of aperiodicity are in the light blue background. Note

that as 𝑅𝑒 varies during the shift in whistling frequency that occurs via the state of

intermittency, the curves of 𝐷𝐸𝑇𝐽 and 𝑅𝑅𝐽 decrease and then subsequently increase,

indicating the decrease and increase of the synchronisation strength (Fig. 6.8(a-c)iii & iv).

There is an overall decrease in the values of 𝐷𝐸𝑇𝐽 and 𝑅𝑅𝐽 during the transition from

high-amplitude LCO to low-amplitude LCO, which indicates that the synchronisation

strength reduces and is manifested as the reduction in the amplitude of the LCO. For

the transition via the state of aperiodicity, we observe that 𝐷𝐸𝑇𝐽 and 𝑅𝑅𝐽 decrease, stay

constant for the range of 𝑅𝑒 (16,300 to 18,300), and then rise. This observation implies

that the strength of synchronisation is low for a longer range of 𝑅𝑒 for the transition via

the state of aperiodicity.

Note that the values and variations of these recurrence measures depends on how we

define the recurrence threshold 𝜖 while computing the recurrence matrix. In Section 2.2,

we choose a fixed value of 𝜖 . The motivation behind choosing a fixed value of 𝜖 is to

clearly capture and visualize the state of intermittency (Nair et al., 2014), which has

different amplitudes in the signal during the periodic and the aperiodic epochs. In that
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case, for a fixed 𝜖 , there are more number of recurrence points within the radius of 𝜖 for

the low-amplitude aperiodic trajectory. Hence, we observe that the measure RR rises

as the system exhibits the states of intermittency and aperiodicity during the frequency

shift. In contrast, when the value of 𝜖 is selected such that the recurrence rate 𝑅𝑅

remains constant. We compute the JRM by taking the dot product of the two recurrence

matrices that are computed using fixed 𝑅𝑅. We choose fixed 𝑅𝑅 so as to compare the

simultaneous recurrence patterns observed between the different dynamical states of the

system with fluctuations having different amplitudes. Though 𝑅𝑅 is fixed, the value of

𝑅𝑅𝐽 will be lesser when the trajectories of two signals do not recur at the same time.

Thus, we observe a dip in the value of the measure 𝑅𝑅𝐽 when the system exhibits the

state of intermittency and aperiodicity during the frequency shift.

The state of phase synchronisation

We further make use of the probability of recurrence to identify the type of synchrony

that persists between 𝑢′ and 𝑝′. The probability of recurrence quantifies the probability

with which a state vector of the trajectory recurs after a time lag 𝜏 (Romano et al., 2005).

In figure 6.9, we represent the plots for the variation in the probability of recurrence with

the time lag 𝜏, corresponding to the states of LCO, aperiodicity and intermittency. In

order to study the coupled behaviour of the two subsystems 𝑢′ and 𝑝′, we have overlapped

the plots of 𝑃(𝜏) for 𝑢′ and 𝑝′. We observe several peaks of 𝑃(𝜏) at regular intervals as

the time lag 𝜏 increases, denoting the existence of a very high probability of recurrence

at regular intervals for 𝑢′ and 𝑝′ during LCO (Fig. 6.9a). Further, the peaks of 𝑃(𝜏)

of the two subsystems occur simultaneously, implying that the trajectories of 𝑢′ and 𝑝′

are phase-locked. Hence, we observe the state of phase synchronisation (PS) during

LCO; note that the magnitude of the peaks of 𝑃(𝜏) for 𝑢′ and 𝑝′ are not matching,

implying the absence of generalised synchronisation. During the state of aperiodicity,

we observe very low values of 𝑃(𝜏) for 𝑢′ and 𝑝′, and there is no correlation among

𝑃(𝜏), implying the existence of the desynchronised state (Fig. 6.9b). During the periodic
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Figure 6.8: Representation of the variation of the RQA measures for JRP during the
shifts in whistling frequency via the state of intermittency (peach-coloured
box), through abrupt switching between the LCOs (green box) and through
the state of aperiodicity (light blue box). (a-e)i The variation of 𝑝′rms is
shown in the first column for the ranges of 𝑅𝑒 ≈ 4,600-5,500, 7,000-8,000,
7,800-8,600, 11,500-12,500, and 14,000 19,800, respectively. (a-e)ii The
corresponding variation in the dominant frequency 𝑓𝑑𝑜𝑚 is shown in the
second column. The shaded region represents the absence of dominant
frequency (eii). The variation in the RQA measures (a-e)iii determinism
𝐷𝐸𝑇𝐽 and (a-e)iv recurrence rate 𝑅𝑅𝐽 for JRP are shown in the third and
fourth columns correspondingly. The RQA measure is calculated from the
JRM. The JRM is computed as the dot product of the two recurrence matrices
obtained with an embedding dimension of 7, an optimal 𝜏 of 0.7 ms and a
fixed RR of 0.1. At each 𝑅𝑒, the signal of 1,00,000 points is parted into
sections of 5,000 points, and the mean values of RQA measures are plotted.
The error bar represents the standard deviation. A dip in the variation of
RQA measure signifies a decrease in synchronisation strength during the
shift in whistling frequency.
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Figure 6.9: Characterization of the type of synchronisation observed during the states of
LCO, aperiodicity and the states of intermittency using the RPs where we
observe the variation of 𝑃(𝜏) with the time lag 𝜏. The plots of 𝑃(𝜏) for 𝑢′ and
𝑝′ show (a) the state of phase synchronisation between 𝑢′ and 𝑝′ during the
state of LCO, (b) the state of desynchronisation between 𝑢′ and 𝑝′ during the
state of aperiodicity. (c) The state of phase synchronisation during the periodic
epochs of the intermittency, and (d) the state of desynchronisation during the
aperiodic regime of the intermittency. The corresponding normalized signals
of 𝑢′ and 𝑝′ are shown in the bottom row of each subfigure.
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epochs of intermittency, the peaks of 𝑃(𝜏) of the two subsystems occur simultaneously,

implying that the trajectories of 𝑢′ and 𝑝′ are phase-locked (Fig. 6.9b) and it is a phase

synchronised state. During the aperiodic epochs, the values of 𝑃(𝜏) of 𝑢′ and 𝑝′ are low,

and there is no correlation among them, implying the desynchronised state (Fig. 6.9d).

Thus, we conclude that the state of LCO corresponds to the phase-synchronised state of

𝑢′ and 𝑝′, implying a high strength of lock-in between the acoustic and hydrodynamic

modes. We observe that the state of aperiodicity corresponds to the desynchronised state

of aperiodic 𝑢′ and 𝑝′. The state of desynchronisation implies the absence of lock-in

between the acoustic and hydrodynamic modes. During the state of intermittency, we

observe that periodic epochs of 𝑢′ and 𝑝′ are phase synchronised and the aperiodic

epochs of 𝑢′ and 𝑝′ are desynchronised. Hence, the state of intermittency corresponds to

the state of intermittent synchronisation. The state of intermittent phase synchronisation

indicates that there are fluctuations in the strength of lock-in between the acoustic and

hydrodynamic modes when 𝑅𝑒 is near the region of LCO.

6.2 CONCLUDING REMARKS

To summarize, we observed shifts in whistling frequency when the Reynolds number 𝑅𝑒

of the flow in an aeroacoustic system, having a flow through two orifices, is increased. We

discovered that the shift in whistling frequency occurs via three different scenarios— (1)

a direct transition between the two limit cycle oscillations (LCOs) as an abrupt transition,

(2) via the state of intermittency, and (3) via the state of aperiodicity. The abrupt

transition between the LCOs manifests as a state of bursting between the high-amplitude

and low-amplitude LCOs. We characterize the observed dynamical states using the

recurrence plots. During the frequency shift, we showed that there is a variation in the

strength of lock-in between the acoustic and hydrodynamic modes using the Determinism

𝐷𝐸𝑇𝑗 . We used the synchronisation analsysi to study the coupling behaviour between

the velocity (𝑢′) and acoustic pressure (𝑝′) fluctuations for the transitions associated with
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the frequency shifts. Using the probability of recurrence, we showed that the state of

LCO corresponds to the state of phase synchronisation between 𝑢′ and 𝑝′ fluctuations.

We also showed that 𝑢′ and 𝑝′ are desynchronised during the state of aperiodicity.

110



CHAPTER 7

CONCLUSIONS AND FUTURE PROSPECTS

The current thesis reports the transitions to high amplitude oscillatory instabilities in

aero-thermoacoustic systems. An individual study of these systems as thermoacoustic

and aeroacoustic systems is performed.

The current study begins with the observation of secondary bifurcation in three disparate

turbulent combustors – annular combustor, swirl-stabilized combustor, and bluff-body

stabilized combustor with preheated air – despite them having completely different flame

responses and acoustic characteristics. These systems exhibit a sequence of transitions

from combustion noise to intermittency to low-amplitude limit cycle oscillations, followed

by an abrupt jump to large-amplitude secondary limit cycle oscillations. We then modelled

the secondary abrupt bifurcations using a second-order oscillator equation containing

higher-order nonlinearities. The effect of turbulence is incorporated in terms of Gaussian

delta-correlated white noise. We show that the model captures the secondary bifurcation

very well and depicts good qualitative agreement with the dynamical states observed

in experiments. The Langevin equation of the slowly varying amplitude and phase is

then derived through deterministic and stochastic averaging techniques. The potential

function for the secondary bifurcation is obtained, and the stability of the observed

dynamical states is discussed. In addition, the stationary distribution of the envelope of

the amplitude of the fluctuations is also obtained by solving the Fokker-Plank equation.

The study shows that a deterministic subcritical bifurcation is transformed into a

continuous sigmoid-type transition, typical of the intermittency route, in the presence

of noise. By means of comparison, one can observe that for a given intensity of noise,

which is high enough to transform a subcritical Hopf bifurcation into a continuous



one, the secondary bifurcation to a large amplitude limit cycle remains abrupt. The

current study finds that a very high value of noise intensity is required for transforming

a secondary bifurcation into a continuous transition. We, therefore, conclude that

secondary bifurcations can have very high stability due to the presence of higher-order

nonlinearities and can appear in turbulent combustion systems despite having relatively

high levels of turbulent fluctuations. It is to be noted that the higher stability of secondary

limit cycles reflects the system’s high resilience to instability-control strategies, while

their abrupt nature makes them exceedingly difficult to predict.

Upon further conducting experiments under different conditions, a transition which is

rapid and continuous in nature was observed, which was referred to as canard explosions.

The transition appears discontinuous when there is a lack of resolution in the variation

of the control parameter. Though the rise in the magnitude of the fluctuations is steep

in nature, unlike abrupt transitions, the canard explosion in this study exhibits no

hysteresis. When such a transition involves a parameter fluctuation at the bifurcation

regime, the system is bound to exhibit bursting behaviour with large amplitude bursts.

The current study experimentally showed that the state of the bursting, in the regime of

canard explosions, consists of very high amplitude fluctuations amidst low amplitude

fluctuations.

We describe the transition via the canard explosion using the low-order model representing

thermoacoustic systems. A continuous secondary bifurcation steepens at the bifurcation

regime when the nonlinearity of the nonlinear damping in the model is reduced by

coupling a small variable 𝜖 . In other words, the dynamics of the transition from stable

operation to high amplitude oscillatory instability gets restricted to a very narrow range of

control parameters for the values of 𝜖 ≪ 1. For such a steepened transition, we conjecture

that the system amplitude becomes highly sensitive to the change in control parameter at

the bifurcation regime, thus giving rise to a scenario of large amplitude bursts. We have

noticed, from past studies, that the Van der Pol oscillator model is a well-accepted model
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for describing the dynamics of thermoacoustic systems (Lee et al., 2021; Bonciolini

et al., 2021). Past studies have even calibrated the model using techniques such as flame

transfer function (Noiray, 2017). Our motive behind using the phenomenological Van

der Pol oscillator model, corresponding to thermoacoustic systems, is to qualitatively

illustrate the potentiality of these systems to exhibit a rapid continuous transition.

Further, during the state of bursting, we observe a slow variation in the fluctuation of

the exhaust gas temperature in correlation with the envelope of the acoustic pressure

fluctuation. The temperature of the exhaust gas represents the flame temperature as

well as the fluctuation in the heat release rate, which in turn governs the dynamics of

the thermoacoustic oscillations. We convey that parameter fluctuation has a role in

bursting behaviour in the regime of canard explosion, as explained using the low-order

thermoacoustic model.

We further investigate the transitions in an aeroacoustic system, where we observe that

there is feedback from the acoustic field to the acoustic source. We observed shifts

in whistling frequency when the Reynolds number 𝑅𝑒 of the flow in an aeroacoustic

system, having a flow through two orifices, is increased. We discovered that the shift

in whistling frequency occurs via three different scenarios— (1) a direct transition

between the two limit cycle oscillations (LCOs) as an abrupt transition, (2) via the state

of intermittency, and (3) via the state of aperiodicity. The abrupt transition between the

LCOs manifests as a state of bursting between the high-amplitude and low-amplitude

LCOs. We characterize the observed dynamical states using the recurrence plots. During

the frequency shift, we showed that there is a variation in the strength of lock-in between

the acoustic and hydrodynamic modes using the phase locking value (PLV). We used the

theory of synchronisation to study the coupling behaviour between the velocity (𝑢′) and

acoustic pressure (𝑝′) fluctuations for the transitions associated with the frequency shifts.

Using the probability of recurrence, we showed that the state of LCO corresponds to the

state of phase synchronisation between 𝑢′ and 𝑝′ fluctuations. We also showed that 𝑢′
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and 𝑝′ are desynchronised during the state of aperiodicity.

In conclusion, we observed that the difference in the frequency shifts during the state of

intermittency is relatively high compared to what is observed during the state of abrupt

switching between the LCOs. However, during the state of aperiodicity, the frequency

shift is significantly higher compared to the shifts observed during the intermittency and

the abrupt switching between the LCOs. The frequency shift indicates the loss in the

strength of the lock-in between the current acoustic and hydrodynamic modes and the

beginning of the lock-in for the subsequent modes. This observation is evident from the

variation of PLV with 𝑅𝑒, which decreases to a local minimum and then rises during

the frequency shift. From the perspective of synchronisation theory, the frequency shift

corresponds to a decrease and a subsequent increase in the strength of synchronisation, as

depicted by the recurrence quantification analysis (RQA) measures of the joint recurrence

matrix.

The existence of PS implies that during the state of LCO, the variables 𝑢′ and 𝑝′

significantly influence each other. The observation of the intermittent phase

synchronisation indicates fluctuations in the strength of lock-in between the acoustic and

hydrodynamic modes during the state of intermittency. We conjecture that the

fluctuations in the strength of lock-in between the modes, in combination with the

turbulent fluctuations, also result in the abrupt switching between the LCOs.

SCOPE FOR THE FUTURE WORK

In this thesis, we investigated the potentiality of turbulent aero-thermoacoustic systems

exhibiting different transitions to oscillatory instabilities, specifically sudden transitions.

The proposed model to describe abrupt transition and canard explosion can be utilized

for system identification to predict the transitions in real time for turbulent combustors.

Further, it is also important to understand the change in the nature of bifurcation as an

additional parameter is changed in these turbulent fluid mechanical systems. For instance,
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studies in the past have shown that the nature of bifurcations changes as the turbulence

intensity, as an additional parameter, is changed (George et al., 2018; Nagarajan et al.,

2019). However, a systematic variation of this additional parameter, which reveals

the change in the nature of bifurcation, is missing in past studies. The turbulent aero-

thermoacoustic systems exhibit gradual, abrupt and canard explosions due to changes in

the response between the subsystems. The subsystems include hydrodynamics, acoustic

field, and heat release rate fluctuations. Any system parameter that significantly influences

the response between the subsystems can be varied as an additional parameter to observe

the change in the nature of the bifurcation. For instance, Etikyala and Sujith (2017)

observed that the nature of the bifurcation changes from supercritical to subcritical as an

additional parameter is varied in a laminar thermoacoustic system, a Rijke tube. Here,

the heater power of the Rijke tube is varied as the primary control parameter and the

mass flow rate of the air is changed as an additional parameter. Similarly, in turbulent

combustors, one can vary the power of the combustor or the bluff body position to

investigate the change in the nature of the bifurcations. However, an understanding of

flow physics is relevant to obtain further insights into the abrupt transition in turbulent

aero-thermoacoustic systems. Thus, a future study involving the visualization of the flow

field using particle image velocimetry and high-speed chemiluminescence imaging of

flame dynamics is required to observe the dynamics of the turbulent field as the nature of

transition changes.

115





APPENDIX A

CANARD EXPLOSIONS AND GRADUAL
TRANSITIONS

A.1 HOPF BIFURCATION: EMERGENCE OF LCO FROM THE SILENT

STATE

A canard explosion is characterized by a sudden transition from a low-amplitude

oscillatory state to a high-amplitude oscillatory state within an exponentially small range

of the control parameter. Moreover, a low-amplitude oscillatory state emerges from a

Hopf bifurcation (Brøns and Bar-Eli, 1991). However, practical combustors involve

turbulent reactive flow. In turbulent systems, we notice that the stable operation is not

really silent due to inherent turbulent fluctuations (Nair et al., 2014). If one considers a

mean-field description where the effect of turbulence is discounted, the bifurcation of

the turbulent thermoacoustic system could be viewed as a transition from a fixed-point

solution to a periodic solution— which is a Hopf bifurcation

Figure A.1 represents the states of low amplitude chaos during stable operation,

intermittency, large amplitude bursting and limit cycle oscillations for the transition

consisting of a canard explosion in a bluff body stabilized dump combustor. We present

the time series and phase trajectory of the low amplitude chaos during stable operation

in Fig. A.1(b). The operating conditions of the combustors correspond to an

approximate Reynolds number of 3 × 104 where the flow is fully turbulent. The low

amplitude chaos is due to this inherent turbulence of the combustors; thus, we observe

that stable operations are not silent. With a further variation in the control parameter (𝜙),

we observe the state of intermittency (refer to Fig. A.1c).

Upon further variation of 𝜙, referring to Fig. A.1(d), we notice a state of large amplitude



bursting. During the state of bursting, we show the states corresponding to high amplitude

limit cycles (LCO, 𝑝′ ≈ 3000 Pa), low amplitude LCO (𝑝′ ≈ 500 Pa) and low amplitude

chaos (𝑝′ ≈ 200 Pa, Fig. A.1(d)). The observation from the states of intermittency and

large amplitude bursting implies that a low-amplitude LCO is born out of low-amplitude

chaos, and the transition is continuous but rapid in nature. During the bursting state, the

existence of all the ranges of the amplitudes of LCOs, including low amplitude chaos,

is possibly due to the fluctuation of the system parameter across the steep rise of the

canard explosion. This argument regarding the fluctuation of the system parameter also

corroborates the bursting behaviour in the results from the model, as illustrated in Section

5.2.1. Upon further slight variation in the control parameter (𝜙), the system exhibits a

very high amplitude LCO (𝑝′ ≈ 6000 Pa), indicating an underlying canard explosion

(Fig. A.1e).

A.2 COMPARISON BETWEEN THE CANARD EXPLOSION AND THE

GRADUAL TRANSITION

Figure A.2 represents the comparison between the canard explosion and a gradual

transition in a turbulent thermoacoustic system. We present the bifurcation diagram

for the experimental trial where the control parameter is varied in steps of 5 SLPM

(Fig. A.2a). We observe that the amplitude of the system rapidly rises in a continuous

manner for smaller changes in equivalence ratio at 𝜙 ≈ 1.2 (refer to the light blue patch

in the Fig. A.2a). This observation implies a higher sensitivity of the amplitude of the

system with the control parameter at the regime of canard explosion. The experimental

observation of this canard explosion also matches with the results from the model, as

shown in Fig. A.2(b).

To further examine the sensitivity of the system amplitude on the control parameter, we

perform experiments to obtain a gradual transition to thermoacoustic instability in a bluff

body stabilized combustor. The combustor is operated with the same operating conditions
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(refer to Chapter 3) corresponding to the results of the canard explosion, except for the

bluff body position from the dump plane and the fuel flow rate. The new distance of the

bluff body from the dump plane is 30 mm, and the fuel flow rate is 46 SLPM. At this new

operating condition, we obtain a gradual transition unlike canard explosion, as shown in

Fig. A.2(c). Here, we notice that there is a gradual increase in the amplitude of the 𝑝′rms

as a function of 𝜙 (refer to the grey coloured patch in the Fig. A.2c). We also represent

the model results obtained for a noisy gradual transition, shown in Fig. A.2(d), obtained

by modifying the nonlinear coefficients (𝜇2 = 1, 𝜇4 = 0, & 𝜇6 = 0). Thus, we observe

that for a canard explosion, the amplitude rise is much steeper than the gradual transition.
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Figure A.1: Representation of the states of stable operation, intermittency, large amplitude
bursting and limit cycle oscillations for the transition corresponding to canard
explosion in a bluff body stabilized dump combustor. (a) Bifurcation diagram
for the variation of 𝑝′rms as a function of the equivalence ratio (𝜙). (b) Time
series and phase space trajectory of low amplitude chaos during the stable
operation. (c) Representation of the time series corresponding to the state of
intermittency. (d) Time series corresponding to the state of bursting. We
have also shown a zoomed-in region of the time series and phase space
trajectories of certain epochs. Here, we present the epochs corresponding
to high amplitude limit cycles (LCO, 𝑝′ ≈ 3000𝑃𝑎), low amplitude LCO
(𝑝′ ≈ 500 Pa) and low amplitude chaos 𝑝′ ≈ 200. The observation implies
that a low-amplitude LCO is born out of low-amplitude chaos, and the
transition is continuous but rapid in nature. The existence of all the ranges
of the amplitude of LCOs, including low amplitude chaos, is possibly due to
the fluctuation of the system parameter across the steep rise of the canard
explosion. (e) Time series corresponding to the state of LCO and the phase
space trajectory.
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Figure A.2: (a) Representation of a sudden transition to high amplitude periodic
oscillations via canard explosion in a bluff body stabilized dump combustor.
We present the bifurcation diagram for the variation of the rms value of the
acoustic pressure fluctuations (𝑝′rms) as a function of the equivalence ratio
𝜙. The airflow rate, which governs the control parameter, varies in steps
of 5 SLPM during the canard explosion regime. (b) The corresponding
results of canard explosions obtained from the model. (c) Representation of
the gradual bifurcation obtained in the bluff body stabilized combustor by
modifying the fuel flow rate (46 SLPM) and the distance of the bluff body
from the dump plane (30 mm). (d) The corresponding results of gradual
bifurcation obtained from the model. We notice that for a canard explosion,
the amplitude rise is much steeper than the gradual transition.
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APPENDIX B

NATURAL MODES AND TIME SERIES OF
AEROACOUSTIC SYSTEMS

B.1 EIGENMODES OF THE AEROACOUSTIC SYSTEM AND THE MODE

SHAPES EXCITED DURING WHISTLING

We observe a switch in dominant frequencies from 461 to 411, 443 to 535, 535 to 411,

and 445 to 470 Hz when 𝑅𝑒 crosses the values 5100, 7500, 8300, and 12000, respectively

(refer to Fig. 6.1b). The duct modes play an important role in the frequency that is

exhibited during whistling. In order to find the duct modes corresponding to the observed

frequencies, we conducted experiments by exciting the system with a loudspeaker. We

performed the experiment by fixing the amplitude while varying the frequency of the

excitation from 50 Hz to 1000 Hz (refer to Fig. B.1a). We observed a large peak in the

rms value of the acoustic pressure at 536 Hz and another peak with a relatively small

amplitude around 436 Hz. The frequencies that we observe in the experiments during

aeroacoustic instability are in the approximate range of 400 to 536 Hz.

Further, we also performed experiments to find the mode shapes corresponding to the

whistling frequencies exhibited by the system (refer to Fig. B.1b) at different 𝑅𝑒. We

conducted experiments, mounting seven pressure transducers along the length of the

pipe. We observe that these modes correspond to the second mode of the duct having an

open-open boundary condition. Since the source of the sound, that is, the orifice, is a

dipole source, only those modes which have velocity antinode near the location of the

source are favoured (Hirschberg and Rienstra, 2004). Thus, we note that the shifts in

whistling frequency observed in the experiments correspond to the lock-in between the

same duct acoustic mode, but the hydrodynamic modes may be different (Nomoto and

Culick, 1982; Huang and Weaver, 1991).



B.2 TIME SERIES OF ACOUSTIC PRESSURE DURING THE STATES OF

LCO AND INTERMITTENCY

Figure B.2 represents the time series of the acoustic pressure fluctuation signal

corresponding to the state of intermittency and LCO. The states of intermittency (B.2a &

c) correspond to the minima of 𝑝′rms curve (during the shift whistling frequency) shown

in the bifurcation diagram of figure 6.1 in the main text, 𝑅𝑒 ≈ 7500 & 8400. During this

state, we observe the bursts of periodic oscillations amidst the epochs of aperiodic

oscillations. At 𝑅𝑒 ≈ 8100, which corresponds to the maxima of 𝑝′rms curve in figure 6.1

of the main text, we observe the state of LCO.
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Figure B.1: (a) The variation of the 𝑝′rms of acoustic pressure when the system is excited
using a loudspeaker from 50 Hz to 1000 Hz. We observe a large peak at 536
Hz. (b) Acoustic mode shapes were obtained by locating the microphones
along the duct length during the experiments. Mode shapes were obtained for
the 𝑅𝑒 of 4500, 6700, 7600, 10900, and 11900. The ordinate represents the
maximum amplitude of the signal from the amplitude spectrum (represented
as the black dots), and the abscissa represents the position of the microphones
along the length of the duct. The red curve in the plots indicates the theoretical
mode shape for an open-open boundary condition of the duct, obtained using
the equation 𝑝(𝑥) ≈ 𝑝𝑚𝑎𝑥 | sin (𝑘𝑥) |. Where 𝑘 is the wave number, and 𝑥

is the distance from the duct inlet face. The expression for 𝑘 is given as
𝑘 = 𝑛𝜋/𝐿, where 𝑛 is the mode number and 𝐿 is the length of the duct. The
frequencies corresponding to these mode shapes range from 400 to 535 Hz.
We observe that these mode shapes correspond to the second mode of the
duct having an open-open boundary condition.
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Figure B.2: Acoustic pressure fluctuations during (a) the state of intermittency at 𝑅𝑒 ≈
7500, (b) the state of LCO at 𝑅𝑒 ≈ 8100, and (c) the state of intermittency at
𝑅𝑒 ≈ 8400. According to the bifurcation diagram of figure 6.1 in the main
text, the states of intermittency are found at the minima of 𝑝′𝑟𝑚𝑠 curve during
the frequency shift. The maxima of 𝑝′𝑟𝑚𝑠 corresponds to the state of LCO.
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APPENDIX C

RECURRENCE ANALYSIS FOR THE
AEROACOUSTIC SYSTEM

C.1 RECURRENCE PLOTS FOR THE STATES OF LCO AND

INTERMITTENCY

Figure C.1 represents the recurrence plots corresponding to the state of LCO (𝑅𝑒 ≈

4800, 7300, 8100 & 12200) and the state of intermittency (𝑅𝑒 ≈ 7496 & 8400). For the

state of LCO, we observe continuous diagonal lines which are equally spaced apart. The

distance between the diagonal lines signifies the fundamental time period of the LCO.

During the state of intermittency, we observe the black patches amidst the white region.

C.2 JOINT RECURRENCE PLOTS FOR THE STATES OF LCO AND

INTERMITTENCY

Figure C.2 represents the joint recurrence plots corresponding to the state of LCO

(𝑅𝑒 ≈ 4800, 7300, 8100 & 12200) and the state of intermittency (𝑅𝑒 ≈ 7500 & 8400). If

the trajectories of the two subsystems 𝑢′ and 𝑝′ recur simultaneously, we observe a black

dot in JRP. During the state of intermittency (Fig. C.2c & e), we observe that the black

dots are sparsely spaced due to the absence of recurrence trajectories during the aperiodic

epochs of 𝑢′ and 𝑝′. This observation depicts the weak synchronisation strength between

the signals of 𝑢′ and 𝑝′. During the state of LCO, we observe an increase in the density

of black dots and the appearance of short diagonal lines (Fig. C.2 a, b, d, and f). This

observation of the diagonal lines in the JRP represents an increase in the synchronisation

strength between 𝑢′ and 𝑝′.



Figure C.1: Recurrence plots for the dynamical states observed with variation in 𝑅𝑒.
(a) LCO at 𝑅𝑒 ≈ 4800. (b) LCO at 𝑅𝑒 ≈ 7300. (c) Intermittency at
𝑅𝑒 ≈ 7500. (d) LCO at 𝑅𝑒 ≈ 8100. (e) Intermittency at 𝑅𝑒 ≈ 8400. (f)
LCO at 𝑅𝑒 ≈ 12200. During the states of intermittency, we observe the
black patches amidst the white region of RP. In contrast, during the state of
LCO, we observe equally spaced continuous diagonal lines in the RP.
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Figure C.2: Joint recurrence plots of the dynamical states that are observed with variation
in 𝑅𝑒. (a) LCO at 𝑅𝑒 ≈ 4800. (b) LCO at 𝑅𝑒 ≈ 7300. (c) Intermittency
at 𝑅𝑒 ≈ 7500. (d) LCO at 𝑅𝑒 ≈ 8100. (e) Intermittency at 𝑅𝑒 ≈ 8400.
(f) LCO at 𝑅𝑒 ≈ 12200. We observe diagonal lines in the JRP when
there is higher synchronisation strength between the two periodic signals.
We observe sparsely spaced black dots, interspersed with broken diagonal
lines, in JRPs when the synchronisation strength is low during the states of
intermittency.
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APPENDIX D

SYNCHRONISATION ANALYSIS FOR THE
AEROACOUSTIC SYSTEM

In the current aeroacoustic system, the acoustic field and the hydrodynamic field (Vortex

shedding) are two different subsystems. Considering the following observations, we

study the synchronisation between acoustic pressure and velocity fluctuations. Figure D.1

shows the time series obtained from the microphone and the hotwire during the aperiodic

state at the higher bulk flow velocity. Here, we observe a broad band in the amplitude

spectrum; however, there is a slight periodicity in the acoustic pressure fluctuations 𝑝′,

which is observed as a peak in the amplitude spectrum. The spectrum of the velocity

fluctuations is broad without having any dominant peaks (cf. Fig D.1b, c). Thus, we

observe two different aperiodic signals.

The dominant peak in 𝑝′ is attributed to the sound corresponding to the fundamental

mode of the duct, generated due to the resonance of a range of flow disturbances in the

entire duct. The magnitude of this sound is very low, and its generation is not due to the

feedback mechanism between the acoustic and vortex shedding dynamics at the orifices

Agarwal (1994a). Hence, the measured signal from the hot film probe is aperiodic with a

broad amplitude spectrum due to the absence of periodic shedding of vortical structures.

Thus, the difference in the nature of the measured signal from the microphone and the

hot film probe implies that there is a negligible influence of the acoustic field over the

hydrodynamic field Agarwal (1994b). Although these two system variables are strongly

coupled during whistling, they are desynchronised during the aperiodic states. Thus,

unlike velocity and displacement variables in a spring mass system, the velocity and

acoustic fluctuations in an aeroacoustic system, in actuality, are not complementary.

However, the velocity and acoustic pressure have synchronised periodic oscillations



Figure D.1: The fluctuations in the signal from the microphone and hotwire measured
during the experiments when the bulk flow velocity is 13.4 m/s based on
the diameter of the orifice (𝑅𝑒 = 17800). Here, (a) we observe that there
is slight periodicity in the acoustic pressure fluctuation, which is observed
(b) as a peak in the amplitude spectrum. In contrast, the spectrum of the
velocity fluctuations is broad without having any sharp peaks.
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Figure D.2: The fluctuations in the signals from the microphone and hotwire measured
during the experiments. We present the time series and their zoomed-in
versions in the first column and the respective amplitude spectrum in the
second column. The measurements are taken when the bulk flow velocity is
9.07 m/s based on the diameter of the orifice (𝑅𝑒 = 12077).

during the state of the limit cycle oscillations (Fig. D.2).
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