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ABSTRACT

KEYWORDS: Thermoacoustic instability; Blowout; Complex networks; Recur-

rence Networks; Turbulent Reactive Flows; Acoustics; Synchro-

nization; Directional Dependence.

Gas turbines are widely used in the aviation and power industries. Gas turbine

combustion is a major source of power production but it is accompanied with emission

of pollutants. In order to keep the emissions of the hazardous NOx oxides in check,

and to meet the stringent emission requirements, clean combustion is needed. Clean

combustion is achieved using operating these engines under lean fuel conditions, where

the temperature is low, thereby reducing the production of nitrogen oxides. But when

operated under fuel lean conditions, the flame is highly susceptible to the perturbations

in the flow field. The operation of engines under these conditions is impaired by the

occurrence of thermoacoustic instability and flame blowout.

Thermoacoustic instability occurs when there is positive coupling between the acous-

tic field and the heat release rate. Thermoacoustic instability is composed of high-

amplitude, pressure oscillations. These oscillations are detrimental to the engines due

to the increase in thermal and mechanical stresses, resulting in loss of billions of dollars.

Flame blowout occurs when the flame ceases to exist in the combustor. This can cause a

sudden drop in altitude of an airplane and productivity loss in case of land based gas tur-

bines. However, clean combustion cannot be avoided and increase in fuel efficiency is

extremely useful. Hence, there is an exigency to study the transition to thermoacoustic

instability and blowout.

Traditionally, the transitions in the thermoacoustic systems are analyzed from a re-

ductionist approach which attempts to analyze a complex system in terms of its con-

stituent elements. Recently, multifractal characteristics are found in combustion noise

(pressure oscillations during the stable operation zone) and the acoustic oscillations

prior to flame blowout. This indicates the presence of inherent complexity in the sys-

tem, which is due to the nonlinear interaction between the acoustic field, combustion
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kinetics and hydrodynamics. The traditional reductionist approach fails to explain this

complexity in the thermoacoustic system.

In this study, complex networks are used to study thermoacoustic system, in our case

a turbulent combustor. Since recurrence is a fundamental property of any deterministic

dynamical system, we construct the recurrence networks from the acoustic time series

and the global heat release rate time series acquired from the combustor. Univariate

recurrence networks constructed from the acoustic time series capture the transitions

to thermoacoustic instability and lean flame blowout. The singularities present in the

time series are captured in the power law degree distributions present in the recurrence

networks constructed from combustion noise and oscillations prior to flame blowout.

The network measures such as characteristic path length, betweenness centrality change

well before these transitions and hence can be used as early warning signals to forewarn

thermoacoustic instability and lean blowout.

Since thermoacoustic instability is a result of positive coupling between the acous-

tic field and the turbulent reactive flow, we analyze the coupled behavior during the

transition to thermoacoustic instability via intermittency (a state composed of bursts of

large amplitude periodic oscillations appearing at irregular intervals amidst aperiodic

fluctuations) using synchronization framework. We quantify the synchronization tran-

sitions using the measures derived from recurrences in phase space such as probability

of recurrence plots, multivariate recurrence plots and networks. The directional depen-

dence between the acoustic field and the turbulent reactive flow field is determined and

a possible asymmetric bidirecional coupling between them is discovered with the heat

release rate affecting the acoustic field more than vice versa. This paves a way for de-

veloping effective control strategies directed towards the unsteady flame to the mitigate

thermoacoustic instability.
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CHAPTER 1

Introduction

Gas turbine combustors are widely used in aviation and power generation industries. In

fact, energy conversion through the combustion of fossil fuels is an extremely impor-

tant technology. However, gas turbine combustion produces a lot of pollutants, mainly

harmful nitrogen oxides (NOx) that result in acid rain and smog. Reduction of NOx in

gas turbine engnines is a major challenge in gas turbine industry. In order to reduce the

NOx emissions, which are produced due to the high temperatures in the combustors,

gas turbines are operated in fuel-lean conditions. Lean premixed fuel combustion also

allows for complete combustion, thereby increasing the fuel efficiency, in addition to

decreasing the NOx emissions. But lean fuel conditions cause the flame to be highly

sensitive to perturbations (Richards and Janus, 1997) and gas turbine engines operating

in fuel lean conditions are susceptible to thermoacoustic instability and lean blowout.

Thermoacoustic instability arises when there is positive feedback between the un-

steady heat release rate and the acoustic field in the combustor. Thermoacoustic in-

stability results in self-excited large amplitude pressure oscillations in the combustor.

The combustion in these systems occur in a confined environment and the combustion

process is inherently unsteady due to the turbulence in the reactive flow field. The

acoustic waves originate from the unsteady flame, travel downstream of the combustion

chamber, reflect at the boundaries of the confinement and further affect the combustion

process forming a feedback loop. Lord Rayleigh 1878 stated that when the combustion

response is positively coupled (i.e., in phase) with the acoustic field, acoustic energy

is added into the system. This addition of the acoustic energy results in an indefinite

increase in the pressure amplitude, when the driving is greater than the losses. The am-

plitude saturates once the nonlinearities set in, when the energy added is balanced by

the losses in the combustion chamber.

The self-sustained large amplitude pressure oscillations in the combustor chamber

has detrimental consequences to the structural integrity of the engine. These oscillations

cause sudden enhancement in the heat transfer to the walls increasing the mechanical



and thermal stresses which can result in failure of components (McManus et al., 1993;

Lieuwen and Neumeier, 2002; Juniper and Sujith, 2018). Hence, it is important to

predict and control thermoacoustic instability. Since thermoacoustic instability is a

result of complex interaction between the acoustics, combustion and hydrodynamics,

understanding thermoacoustic instability is challenging and compelling.

On the other hand, lean blowout is a state where flame ceases to exist in the com-

bustor. In fuel-lean conditions, the combustion temperature is reduced which decreases

the flame speed. Also, the flow speeds in fuel lean conditions is higher than the flame

speeds making the flame stabilization in a combustor challenging. In order to stabilize

the flame in a combustor, variour flame stabilization mechanisms such as bluff body,

swirler, V-gutter etc., to name a few are used. These flame holding mechanisms create

low velocity regions, to stabilize the flame. However, when equivalence ratio (φ), actual

fuel-air ratio to the stoichiometric fuel-air ratio, is reduced below a certain value, the

flame ceases to exist in the combustor and propagates outside. This state is referred to

as lean blowout and the equivalence ratio after which lean blowout occurs is referred to

as the lean blowout limit.

Blowout also has detrimental consequences to the engine. In aircrafts, blowout

results in the loss of the thrust generated. This might also lead to a sudden drop in the

altitude of the aircraft. In case of land-based gas turbine engines, in addition to power

loss, blowout causes complete shutdown and requires re-ignition of the engine resulting

in productivity loss. Hence, prediction of lean blowout limit and operating away from it

is highly important to avoid the losses due to blowout. Further, there is an exigency to

investigate and characterize the dynamics underlying the transitions to thermoacoustic

instability and blowout in a turbulent combustor to be able to predict these impending

instabilities.

Traditionally, several studies attempted to characterize the dynamics during the sta-

ble combustion (referred to as combustion noise) and unstable combustion (thermoa-

coustic instability and lean blowout). They have shown that in many combustors when

the equivalence ratio is varied from fuel rich to fuel lean conditions, the transitions

happen from combustion noise to thermoacoustic instability and from thermoacoustic

instability to lean blowout. However, they focused on contrasting the dynamics ob-

served within each regime but not on the dynamical transition from combustion noise

2



to thermoacoustic instability and lean blowout which is important in order to develop a

precursor. Nair et al. 2014 showed that the transition to thermoacoustic instability from

combustion noise occurs through intermittency. Kabiraj et al. 2012 detected intermit-

tency prior to blowout in a laminar premixed combustion system and reported a rich

dynamical behavior during the transition from combustion instability to lean blowout.

Unni et al. 2015 developed an uniform framework to study the transition from combus-

tion noise to thermoacoustic instability and to lean blowout using multifractal analysis.

Using intermittency, several precursors are developed to predict thermoacoustic insta-

bility and to lean blowout. A detailed literature survey on precursors in given in the

section 1.5.

However, the dynamics in a turbulent combustor is due to the complex interaction

between the acoustic field, combustion and the hydrodynamics and hence the thermoa-

coustic system can be treated as a complex system. The complex system perspective

of a turbulent combustor is discussed in the section 1.4. Complex networks are used

to study complex systems. Murugesan & Sujith 2015 constructed visibility networks

from the acoustic time series to study the transitions in the thermoacoustic system. The

present work focuses on analyzing the transition from combustion noise to thermoa-

coustic instability and blowout via intermittency using recurrence networks because

recurrence is a fundamental property of a deterministic dynamical system.

All the above studies focus on the acoustic data alone. But thermoacoustic instabil-

ity arises due to the interaction between the acoustic field and the unsteady heat release

rate in the combustor. Hence it is vital to study the coupled behavior of the pressure

fluctuations and the unsteady flame dynamics. Pawar et al. 2017 introduced synchro-

nization framework and studied the transition from combustion noise to thermoacoustic

instability via intermittency as a synchronization transition from desynchronized ape-

riodicity to synchronized order through intermittent phase synchronization. However,

in their study, the characterization of the transition was mostly qualitative. Character-

ization of spatiotemporal behavior of the coupled acoustic field and local heat release

rate fluctuations in the reaction field during the intermittency route to thermoacoustic

instability was performed by Mondal et al. 2017. They observed that the transition

from combustion noise (phase asynchornous state) to thermoacoustic instability (phase

synchronous state) occurs through the formation of a chimera-like state where the phase

asynchronous and the phase synchronous regions coexist at the same instant in the re-

3



action field. More details on the coupled analysis will be provided in the section 1.3.2.

The rigorous quantification of these synchronization states is yet to be done. In addition

to this, the directional dependence between the acoustic field and the unsteady flame

dynamics in a turbulent combustor is yet to be quantified. This will aid in developing

effective control mechanisms to mitigate thermoacoustic instability.

The primary objective of this thesis is to analyze the transitions to thermoacoustic

instability and blowout in a turbulent combustor using recurrence networks and develop

early warning measures to predict impending thermoacoustic instability and blowout.

Further, since thermoacoustic instability is a result of interaction between the acoustic

field and the unsteady heat release rate, we study the coupled behavior of acoustic field

and the unsteady flame dynamics and identify the directional dependence between them.

1.1 Historic overview of thermoacoustic instability

1.1.1 Brief History

The first observation of combustion driven acoustic oscillations dates back to 1777,

when Higgins observed a "singing flame" while burning hydrogen gas in a vertical glass

tube to produce water (Higgins, 1802). A musical tone was heard when the flame is

brought closer to the lower end of the glass tube. Following this, other researchers also

noticed an increase in the amplitude of acoutic oscillations when a flame is placed in a

glass tube. They identified that the relation between the frequency and the amplitude

of the acoustic wave depends on the size of the tube, boundary conditions of the tube

and the position of flame inside the tube (Higgins, 1802; Sondhauss, 1850). Rijke used

an open-ended glass tube with a metallic gauge at one of the ends. Sound is generated

when the metallic gauge is heated with an external flame until its red hot. The intensity

of the sound is maximum when the heater location is at quarter length of the tube.

Rijke conjectured that the upward convection of air current is the driver of the acoustic

oscillations in the tube (Rijke, 1859). Lord Rayleigh proposed that when heat is added

to the acoustic field when they are in phase, energy is added to the acoustic field in the

chamber. However, the combustion becomes unstable when the added energy is greater

than the damping/losses in the system as shown in equation 1.1. This criterion is used
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to explain the cause of thermoacoustic instability.

R =

∫ T

0

∫ V

0

p′(t)q̇′(t)dtdV > acoustic damping (1.1)

where R is the Rayleigh index, p′ denotes acoustic pressure fluctuations at the flame, q̇′

denotes the heat release rate fluctuations in the flame, t is the time variable, V denotes

the control volume and T is the time period of the oscillations. In the equation 1.1, the

left hand side represents the acoustic driving and right hand side refers to the acoustic

damping.

Detrimental effects of thermoacoustic instabilty is seen in several gas turbine com-

bustors, solid rocket motors, ramjets, scramjets etc. The notable incidents are the ones

in F-1 engines that powered the Saturn rockets, solid-propellant rocket boosters used

in the Minuteman intercontinental ballistic missile, and the Mars Pathfinder descent

motor. Thermoacoustic instability cost billions of dollars to the aviation industry. Gen-

erally baffle plates are used to prevent the transverse mode of combustion instability.

The tangential mode of combustion instability is seen in afterburners and is referred to

as "screech" (Zinn and Lieuwen, 2005). Transverse mode of thermoacoustic instabil-

ity is prevalent in gas turbine engines with high enough aspect ratios or there is large

enough combustion source, operating in fuel-lean regimes to increase the fuel efficiency

and the reduction of NOx emissions (Correa, 1993). All these modes of thermoacoustic

instabilities cause structural damage to the engine and the vibrations can lead to the

damage of the electrical components on board.

In the next section, we discuss a few important mechanisms that can cause thermoa-

coustic instability.

1.1.2 Mechanisms Responsible for Thermoacoustic Instability

As stated in Eq. 1.1, whenever the acoustic driving becomes greater than or equal to

acoustic damping, thermoacoustic instability occurs. The saturation of the pressure os-

cillations occur when the acoustic driving is balanced by acoustic damping. There will

be a growth (decay) in amplitude of p′ when the acoustic driving (damping) dominates

acoustic damping (driving). The sources for acoustic damping include viscous dissipa-

tion, radiative or convective heat transfer out of the combustor, transfer of acoustic en-
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ergy within the acoustic modes etc., to name a few (Zinn and Lieuwen, 2005). However,

the physical mechanisms responsible for the acoustic driving have to be understood to

mitigate thermoacoustic instability.

Fluctuations in Flame Surface Area and Equivalence Ratio

In turbulent combustors, the turbulence in the underlying flow field affects the flame

front (Renard et al., 2000). Turbulence causes distortion and wrinkes in the flame sur-

face which in turn affects the heat release rate fluctuations. The fluctuations in the flame

surface area determines the heat release rate fluctuations. This modified heat release rate

can enhance the acoustic fluctuations in the combustor, thereby causing thermoacoustic

instability. Lieuwen et al. 1998 reported that the fluctuations in the equivalence ratio

can cause thermoacoustic instability. The equivalence ratio fluctuations can cause im-

proper mixing between fuel and air. The modulated reaction mixture which convects

into the combustion chamber can cause periodic oscillations in the heat release rate,

when in phase with the acoustic fluctuations, can act as acoustic driving mechanism.

Large Scale Coherent Vortices in the Flow Field

In addition to these, the flame stabilization mechanisms used to stabilize the flame in

fuel lean conditions can result in large scale, coherent vortex shedding. These vortices

contain the reaction mixtures and the sudden breakdown of these vortices can result

in sudden heat addition in the combustion chamber, which can act as an acoustic driv-

ing mechanism (Schadow and Gutmark, 1992). Further, various studies reported the

emergence of large scale coherent structures during the onset of combustion instability

(Sampath and Chakravarthy, 2016; Unni and Sujith, 2017). Moreover, Chakravarthy et

al. (Chakravarthy et al., 2007) showed that the acoutic mode shifts to the hydrodynamic

mode during thermoacoustic instability.

Other mechanisms

In spray combustors, the interaction of acoustic field with the atomization process

causes fluctuations in the droplet size, evaporation times, mixing process which in-

turn affects the heat release rate. Thus, the spray-acoustic interaction can also result
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in thermoacoustic instability (Crocco and Cheng, 1956; Sujith et al., 2000). Comple-

menting the above mentioned mechanisms, there are other mechanisms that can lead to

thermoacoustic instability in a combustor. The similarity between time scales of vari-

ous processes occuring in the combustor such as, the evaporation time scale, miximg

time scale, convection time scale, acoustic time scale can lead to thermoacoustic in-

stability if they satisfy eq. 1.1. The geometry of the combustor can modify the flow

field which when interacts with the flame causes heat release rate fluctuations causing

thermoacoustic instability (Zinn and Lieuwen, 2005). Unsteady combustion produces

entropy waves in addition to acoustic waves. The entropy waves when accelerate past

the combustor exit can generate acoustic waves (referred as indirect combustion noise).

These waves can travel upstream and effect the flame, inturn effecting thermoacoustic

instability (Lieuwen, 2003; Goh and Morgans, 2013).

Overall thermoacoustic instability occurs due to the interaction between the acoustic

field, the hydrodynamic flow field and the reaction kinetics. This interaction is complex

and highly nonlinear due to the inherent nonlinearity in turbulence, non-homogeneity

of distribution of reaction species. Thus the onset of thermoacoustic instability is a

nonlinear process and this can be seen in the saturation of acoustic oscillations.

1.1.3 Linear Stability Analysis

Thermoacoustic instability comprises of self-excited large amplitude limit cycle os-

cillations. In classical analysis, the onset of thermoacoustic instability is seen as the

loss of dynamical stability in a combustor (Nair and Lieuwen, 2005; Thiruchengode,

2006). In order to perform linear analysis, the nonlinear partial differential equations

are converted into ordinary differential equations. These equations are then linearized

assuming that the fluctuations are small. The acoustic pressure fluctuations in gas tur-

bine combustors are within 5% of the mean pressure (Lieuwen and Neumeier, 2002).

Thus, the linear stability analysis is performed on the state space equations dx
dt

= Ax,

where A is the linear state space matrix and x is an array of system variables. The

stability of the system is determined by computing the eigenvalues of A. During the

dynamically stable regime, the real parts of all the eigen values will be negative. The

linearly stable and unstable regimes are hence identified by the sign of the real parts of

the eigen values.
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Further, the linear stability of the combustor can also be determined using flame

tranfer funtion (FTF). The forced response of the flame to the acoustic perturbarions at

a forcing frequency is given by FTF. FTF measures linear reponse of the heat release

rate fluctuations (q̇′) to the acoustic velocity perturbations (u′) at different forcing fre-

quencies. The eigen values of FTF can then be used to idenfy the linear stability of the

system.

In a linearly unstable system, when the steady state is perturbed, the amplitude of

perturbations are expected to grow exponentially. However, in practical gas turbine

combustors, during thermoacoustic instability, the acoustic oscillations saturate to limit

cycle oscillations of finite amplitude. The classical linear stability analysis fails to de-

termine the amplitude and frequency of these oscillations. We only get information

about the growth and decay rate of these oscillations.

Further, linear stability analysis can only be applied when the fluctuations are small.

The transition to thermoacoustic instability from combustion noise can be described

using sub-critical and supercritical Hopf bifurcations. Nair et al. 2014 suggested that, in

turbulent combustors, the transition to thermoacoustic instability occurs via subcritical

Hopf bifurcation. Subcritical Hopf bifurcation contains a bistable zone where during

a range of control parameter, when the perturbation is above a certain threshold, the

system can transition to limit cycle oscillations even during a linearly stable regime.

This phenomenon is called triggering. The classical stability analysis cannot explain

triggering and triggering requires the presence of nonlinearities.

The nonlinear analysis to analyze the transition to thermoacoustic instability is ex-

plained in the section 1.3.

1.2 Historic Overview of Blowout

1.2.1 Literature Survey

When the flow velocity exceed the flame speed in a combustor, flame stabilization be-

comes a challenge. During flame blowout, the flame is convected downstream by the

flow and ceases to exist in a combustor. Flame blowout has detrimental consequences in

gas turbine engines. The notable incident of flame blowout is observed in SR-71 engine
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during a high-acceleration turn where the flames are separated from the engine. Hence,

determining the conditions of flame blowout is important to identify the operational

regimes in a combustor.

Various studies reported conditions for the onset of flame blowout. Since flame

blowout is studied as failure of flame stabilization, Zukoski and Marble 1955 developed

a condition based on the flame holding mechanism. They proposed the Damkohlar

number Da = τres/τchem, where τres denotes the time interval over which the incoming

flow is in contact with the hot recirculation zone created by the flame holding devices

and τchem denotes the ignition time. Thus Da = 1 is the condition for flame blowout.

Similar studies are conducted by Longwell et al. 1953 and Splading 1955.

In literature, it is determined that the addition of H2 causes a delay in the onset of

blowout. The addition of H2 increases OH∗ radicals which increase the flame speed

and reaction rate. Moreover, addition of H2 also reduced the emissions of CO and NOx

(Schefer, 2001; Griebel et al., 2007).

The dynamics of the flame close to lean blowout limit is studied by Nair and Lieuwen

2005, Muruganandam et al. 2005. Nair and Lieuwen 2005 reported the occurrence of

intermittent events localized in time close to flame blowout using the acoustic data and

flame images. Muruganandam et al. 2005 developed precursors to flame blowout by

measuring the OH∗ chemiluminescence imaging. They demonstrated active control

strategies on a swirl stabilized combustor.

The dynamics close to blowout and the physical process that causes blowout is

explained in various studies (Nair and Lieuwen, 2007; Shanbhogue et al., 2009; Muru-

ganandam and Seitzman, 2012). They observed that as the equivalence ratio is reduced,

we approach closer to the lean blowout limit, there is an increase in vorticity magnitude

of the vortices near the bluff-body. The increase in vorticity increases flame stretch rates

at some places. If the stretch rate exceed the flame extinction stretch rate, some holes

are developed in the flame. A further reduction in equivalence ratio causes increase in

the formation of holes. There will be violent detachment and attachment of the flame

causing flame blowout. They observed that the vortices shed before blowout are due

to von Karman type hydrodynamic instability. This flow-flame interaction will be non-

linear and a nonlinear analysis of blowout could bring more insight into the dynamic

processes prior to blowout of flame.
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1.2.2 Classical Stability Analysis

The flame blowout is treated as the loss of static stability of the flame in contrast with

the onset of thermoacoustic instability. Flame blowout is often treated as a flame stabi-

lization problem. The occurrence of blowout is presaged by determining the conditions

of lean blowout limit. Some of the conditions that determine the occurrence of flame

blowout are given in previous section (Nair and Lieuwen, 2005; Muruganandam et al.,

2005).

However, all these conditions based on the flame stabilization mechanisms view

blowout as an abrupt or instanteneous transition. In reality, blowout occurs due to the

detachment and reattachement of flame due to flame stretch rates. The simple conditions

mentioned above fail to explain the dynamics prior to blowout. Thus the classical linear

stability analysis fails to give a complete picture of the onset of blowout.

Thus, we established the need for nonlinear analysis to analyze the transition to

thermoacoustic instability and lean blowout. In the next few sections, we discuss two

novel approaches to analyze these transitions : dynamical systems approach and com-

plex systems approach.

1.3 Dynamical systems approach

Any system that evolves with time is a dynamical system. Dynamical systems theory is

a branch to analyze the characteristics of the dynamical system. In the past few decades,

dynamical systems theory is extensively applied to study various dynamical regimes

exhibited by a thermoacoustic sytem by mainly analyzing the acoustic oscillations from

the combustor.

Using dynamical systems theory, Jahnke and Culick 1994 proposed that a thermoa-

coustic system can undergo a pitchfork and torus bifurcation and exhibit quasiperiodic

oscillations in addition to limit cycle oscillations. The quasiperiodic oscillation is char-

acterized by the presence of two incommensurate dominant frequencies and their mul-

tiples and thus is not periodic. It has been shown that the acoustic oscillations can be

treated using linear analysis but it is the heat release rate fluctuations that bring in the

nonlinearitites. Fichera et al. 2001 demonstrated the presence of chaotic dynamics in
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the heat release rate fluctuaions in lean gas turbine combustors.

1.3.1 Transitions to thermoacoustic instability and lean blowout

Various studies have used the approach of dynamical systems theory to characterize the

nonlinear behavior of thermoacoustic systems and also to detect the dynamical transi-

tions observed prior to the onset of thermoacoustic instability. With the help of dynami-

cal systems approach, a rich dynamical behavior has been reported during the transition

to thermoacoustic instability in such systems (Culick, 1994; Gotoda et al., 2011; Ju-

niper and Sujith, 2018; Kabiraj et al., 2012; Gotoda et al., 2014; Nair et al., 2014).

Kabiraj et al. 2012 showed the existence of various dynamical states such as quasiperi-

odic, chaotic, and period-k, in addition to limit cycle oscillations (LCO), in a premixed

laminar thermoacoustic system.

In most of the turbulent combustors, as the equivalence ratio is varied from stoi-

chiometric to fuel lean regimes, a transition in the system dynamics from low ampli-

tude aperiodic oscillations (combustion noise) to large amplitude LCO (thermoacoustic

instability) is observed. Lieuwen 2002 described the transition to thermoacoustic in-

stability from combustion as the transition from fixed point to limit cycle oscillations.

Traditionally, combustion noise was considered as mere stochastic fluctuations in the

system. Nair et al. 2013 and Tony et al. 2015 used a plethora of tools to ascertain

the deterministic nature of the signal and discovered that combustion noise has features

of high dimensional chaotic oscillations contaminated with coloured and white noise.

Nair et al. 2013 suggested that the transition from combustion noise to thermoacoustic

instability can be considered as a transition from a chaotic state to an ordered state.

Nair et al. 2014 discovered that the transition to thermoacoustic instabilty occurs via

intermittency, a state comprising of large amplitude limit cycle oscillations at irregular

intervals amidst low amplitude aperiodic oscillations. Nair et al. 2013 mentioned the

existence of type-II or type-III intermittency in the gaseous flame bluff body stabilized

turbulent combustor. Nair and Sujith 2015 developed a model that captures the occur-

rence of intermittency prior to the onset of thermoacoustic instability, for a bluff body

stabilized combustor using a stochasic kicked oscillator model. Seshadri et al. 2016

developed a model using the interaction between the acoustic field, vortex shedding
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and the heat release rate. Detection of intermittency helped in developing precursors to

thermoacoustic instability (Nair and Sujith, 2014).

After the occurrence of thermoacoustic instability, if the equivalence ratio is further

reduced, we approach lean blowout limit. This transition from thermoacoustic insta-

bility to lean blowout exhibits rich dynamical behavior. Kabiraj et al. 2012 detected

intermittency prior to blowout in laminar premixed combustion. In case of turbulent

combustors, Unni and Sujith 2017 characterized the intermittency before and after the

occurrence of thermoacoustic instability as type-II. Many other studies reported the

occurrence of intermittent periodic bursts during the transition to thermoacoustic insta-

bility and to blowout (Unni and Sujith, 2015; Nair and Sujith, 2015; Thampi and Sujith,

2015; Nair et al., 2014).

1.3.2 Synchronization transition to thermoacoustic instability

All the above analysis focuses on analyzing the acoustic signal alone. However, it is

well known that the coupled interaction between p′ and q̇′ causes thermoacoustic insta-

bility (Rayleigh, 1878). Various studies in the past have focused on this coupled interac-

tion during either the stable or the unstable regimes of combustor operation (Rogers and

Marble, 1956; Keller et al., 1982; Smith and Zukoski, 1985; Poinsot et al., 1987; Mac-

quisten and Dowling, 1993; Yu and Monkewitz, 1990; Broda et al., 1998; Venkataraman

et al., 1999; Guethe et al., 2012; Sivakumar and Chakravarthy, 2008). Recently, such

coupled interaction between p′ and q̇′ at various dynamical states during the transition

from combustion noise to thermoacoustic instability via intermittency was analyzed by

Pawar et al. 2017 and Mondal et al. 2017.

Pawar et al. 2017 applied synchronization framework to characterize the temporal

behavior of the coupled p′ and q̇′ in a turbulent combustor. They cast the chamber acous-

tic field (p′) and the turbulent reactive flow (q̇′) as oscillators to apply synchronization

framework to thermoacoustic system, as these oscillators exhibit self-sustained oscil-

lations under the influence of turbulent flow (see Appendix for more details). Using

tools from synchronization theory, they described that the transition to thermoacoustic

instability happens from a state of desynchronized aperiodicity (combustion noise) to

the states of phase synchronized (PS) and generalized synchronized (GS) periodic os-
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cillations. Phase synchronization refers to a state when the oscillators are phase locked

and the state of Generalized synchronization refers when the oscillators are related by

functional relationship. Such a transition to PS is observed to occur via a state of in-

termittent phase synchronization (IPS). However, in their study, the characterization

of these states was mostly qualitative. Characterization of spatiotemporal behavior of

the coupled acoustic field and local heat release srate fluctuations in the reaction field

during the intermittency route to thermoacoustic instability was performed by Mondal

et al. 2017. They observed that the transition from combustion noise (phase asyn-

chornous state) to thermoacoustic instability (phase synchronous state) occurs through

the formation of a chimera-like state where the phase asynchronous and the phase syn-

chronous regions coexist at the same instant in the reaction field. They observed that

the Kuramoto order parameter indicates the synchronization transition at the onset of

thermoacoustic instability. Chiocchini et al. 2017 characterized the nature of coupling

between p′ and q̇′ during the onset of thermoacoustic instability. They reported that a

chaotic synchronization index, namely interdependence index can detect the onset of

thermoacoustic instability. They also found that the dependence of p′ on q̇′ is higher

than vice versa and that the heat release rate acts as a driving subsystem. They sug-

gested that, while the asymmetry in the interdependence index implied the presence

of an unidirectional coupling between p′ and q̇′, in reality this cannot be true. They

attributed this anomaly to the difference in the intrinsic embedding dimensions of the

pressure and the heat release rate oscillations which cannot be accommodated in the

computation of the interdependence index. We hypothesize that this anomaly observed

due to interdependence index is not merely because of the difference in the intrinsic

embedding dimensions, but might also be due to the asymmetric bidirectional coupling

between acoustic pressure and unsteady heat release rate. Hence, there exists a need

for a detailed quantitative analysis to detect the synchronization transition and for the

characterization of the directional dependence between p′ and q̇′.

1.4 Complex systems approach

The nonlinear interactions between the acoustic field, the hydrodynamic field and the

unsteady combustion resulting in different dynamical regimes varying from combus-

tion noise (chaos) to thermoacoustic instability (order) in a combustor suggest that the
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thermoacoustic system can be treated as a complex system. In a complex system, the

interaction between components is nonlinear such that the collective behavior of the

system is more than sum of their individual behaviors. These components can self-

organize and exhibit a coherent behavior (Johnson, 2002). This phenomenon is called

emergence in complex system (Mitchell, 2006). We presume that the emergence of

thermoacoustic instability (order) from combustion noise (chaos) and the appearance

of discrete scales during thermoacoustic instability in contrast to the multiple scales

present during combustion noise might be due to self-organization in the system. The

traditional reductionist approach which monitors the individual element is no longer

sufficient to describe the emergent behavior of complex systems (Barabási, 2011).

In complex systems approach, Nair and Sujith 2013 performed multifractal analysis

on the acoustic time series acquired from a tubulent combustor. They detected multi-

fractal nature of combustion noise and the collapse of multifractal spectrum during the

onset of thermoacoustic instability. The presence of multifractal spectrum shows the

lack of a single characteristic temporal scale during combustion noise. Self-similar na-

ture is reported in the oscillations prior to blowout (Gotoda et al., 2012; Domen et al.,

2015) using measures such as permutation entropy, fractal dimension and short-term

predictability. Further, Unni and Sujith 2015 developed a unified framework to de-

scribe the transition from combustion noise to thermoacoustic instability and to lean

blowout. Using complex systems approach, an important precursor, Hurst exponent is

developed.

1.4.1 Complex networks to analyze complex systems

Complex networks are used to study complex systems as they help in understanding the

connectivity pattern (Lesne and Laguës, 2011). Complex networks comprise of nodes

which represent the components of the system and links representing the interactions

between these components. The topology and the measures derived from a network can

be used to characterize the qualitative and quantitative behavior of a complex system.

Variation in the dynamics of the system is reflected in the topology of the network.

The measures derived from the networks can be used to analyze the transitions in the

dynamics of these systems. The underlying dynamics of a physical system is preserved

in the time series data. Hence, in order to study complex systems, time series from such
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systems is converted into complex networks. Modeling the network structure is crucial

to understand the underlying dynamics of the system. Many methods have been devised

to convert the time series into complex networks (Xu et al., 2008; Lacasa et al., 2008;

Zhang and Small, 2006; Donner et al., 2011). Strozzi et al. 2009 have shown that time

series can be converted into complex networks and vice versa.

Recently, complex networks are implemented to analyze fluid flows (Gao and Jin,

2009; Gao et al., 2010; Charakopoulos et al., 2014). The network topologies of the

complex networks constructed from thermoacoustic system can enable us to provide an

alternate description for the transition from combustion noise to thermoacoustic insta-

bility and to lean blowout. Okuno et al. 2015 used the cyclic networks and found that

the thermoacoustic oscillations possess pseudo-periodicity, high-dimensional nature,

power-law behavior in the degree distribution and small-world like nature. In addition

to these, Murugesan and Sujith (Murugesan and Sujith, 2015) introduced complex net-

works to analyze the dynamical regimes in thermoacoustic system. They used visibility

algorithm to convert the time series to complex networks. They detected scale-free

behavior during combustion noise and regularity at the onset of thermoacoustic insta-

bility. Further, Murugesan and Sujith (Murugesan and Sujith, 2016) showed that the

quantities derived from complex networks such as characteristic path length, clustering

coefficient, network diameter and global efficiency can be used as precursors to predict

thermoacoustic instability and blowout.

While converting time series into complex network using visibility algorithm, infor-

mation related to the geometry and structure of the attractor is lost. In order to preserve

the geometric characteristics of the attractor, we use ε−recurrence networks (RN). RN

preserves the information related to the geometry of the attractor.

In the present work, we analyze the dynamical transitions in a turbulent combus-

tor using recurrence networks. We attempt to develop precursors and characterize the

dynamical regimes using the properties of the network topology.
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1.5 Precursors to Thermoacoustic Instability and Lean

Blowout

Thermoacoustic instabilty and lean blowout are hazardous to the combustors. Hence,

it is important to forewarn the occurrence of these impending instabilities and also to

prevent them. In order to mitigate the transition to thermoacoustic instability and lean

blowout, several passive and active control strategies are developed. In this section we

focus on various measures that can be used as early warning signals to predict these

instabilities.

In the recent past, several linear and nonlinear measures are developed. Nair and

Sujith 2013 and Unni and Sujith 2015 demonstrated that the Hurst exponent can be

used as an early warning measure for thermoacoustic instability and blowout. In their

subsequent work, they used recurrence quantification analysis on time series of acoustic

pressure and found that recurrence measures can be used as precursors (Nair et al.,

2014). We discuss about recurrence and recurrence analysis in the chapter 2.4. Unni et

al. 2015 applied an anomaly measure from symbolic time series analysis to detect the

onset of thermoacoustic instability.

Nair and Lieuwen 2005 developed precursors for the blowout detection based on

spectral, statistical and threshold-based analysis of the acoustic signal. Muruganandam

et al. 2005 usedOH∗ chemiluminescence to obtain blowout precursors. Using dynami-

cal system and complex system approach, Gotoda et al. 2012 demonstrated that various

nonlinear quantities such as translational error and permutation entropy can be used as

early warning signals to predict blowout. Unni and Sujith 2015 demonstrated that Hurst

exponent can also be used as a precursor to blowout.

Using the measures obtained from visibility network, Murugesan and Sujith 2015;

2016 developed precursors to thermoacoustic instability and blowout.

1.6 Objectives and Overview of the Thesis

The objectives of the present thesis are focused on the analysis of the transition from
combustion noise to thermoacoustic instability and lean blowout using recurrence net-
works and also focused on understanding the coupled behavior of acoustic field and the
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unsteady flame dynamics during the onset of thermoacoustic instability. The outstand-
ing questions are identified and the objectives of the present thesis are summarized as
follows.

1. We investigate the transition from combustion noise to thermoacoustic instabil-
ity and lean blowout using recurrence networks. Recurrence networks preserve
the geometry of the attractor. We idenfity the degree distribution of the network
during the transition to thermoacoustic instability and lean blowout. We show
the presence of power laws in the degree distributions of recurrence networks
constructed from combustion noise and oscillations prior to lean blowout. Power
laws in the degree distributions represent the presence of singularities in phase
space.

2. We investigate the transition of system dynamics from combustion noise to ther-
moacoustic instability and blowout. We derive the network properties and show
that they can be used as precursors to detect the onset of thermoacoustic instabil-
ity and lean blowout.

3. Pawar et al. 2017 introduced synchronization framework to analyze the transi-
tion to thermoacoustic instability. We construct multivariate recurrence networks
namely, joint recurrence and cross recurrence networks. We show that the multi-
variate recurrence plots capture the coupled behavior of the acoustic field and the
unsteady heat release rate during the transition to thermoacoustic instability. We
further quantify the synchronization transition and identify the onset of various
states through the measures derived from the recurrences in phase space.

4. In order to investigate the interaction between the acoustic field and the unsteady
flame dynamics, we identify the coupled behavior between p′ and q̇′ using mea-
sures derived from intersystem recurrence networks. We discover an asymmetri-
cal bidirectional coupling where q̇′ affects p′ than vice versa. This finding paves
way to design effective control strategies to mitigate thermoacoustic instability.

The organization of the thesis is presented as follows.

In Chapter 2, a basic introduction of complex networks and the methods to con-

struct complex networks from time series is given. Mainly, the description of recurrence

networks and the measures derived from recurrence networks is given. The extension of

univariate recurrence networks to multivariate recurrence networks and the correspond-

ing implications of the measures in analyzing the coupled behavior is also provided.

A brief overview of recurrence quantification analysis and a few synchronization tools

based on recurrences in phase space is also summarized.
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Chapter 3 summarizes the descriptions of experimental setups used in the present

study. Primarily the data acquisition process of the acoustic fluctuations and the global

heat release fluctuaions from a bluff body stabilized turbulent combustor is summarized.

The experimental setup is same as the one used by (Pawar et al., 2017; Unni and Sujith,

2015).

The recurrence network analysis of thermoacoustic system is given in Chapter 4.

The unsteady pressure data which are same as the one reported by Unni and Sujith 2015

are used in the network analysis. The network topolgies for all the dynamical regimes

are shown. The degree distributions and other network measures such as characteristic

path length and betweenness centrality are found to detect the transtions.

The coupled behavior of acoustic pressure and heat release rate oscillations for the

transition of a thermoacoustic system from combustion noise to thermoacoustic insta-

bility through intermittency is quantified using multivariate recurrence plots and recur-

rence networks in Chapter 5. The synchronization states are detected using the mea-

sures derived from these networks. The directional dependence between the acoustic

pressure and heat release rate oscillations is determined.

Finally, conclusions derived from the present thesis are provided in Chapter 6. This

chapter also includes the scope for future work based on the use of recurrence networks

to thermoacoustic systems.
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CHAPTER 2

BACKGROUND ON COMPLEX NETWORKS

In this chapter, we provide a brief description of complex networks, various network

construction techniques and the measures derived from network topology. An insight

into the characteristics of scale free networks, small world networks and the presence of

power laws in the degree distributions of the network is provided. Further, we describe

the procedure for construction of complex networks from time series.

This chapter mainly focuses on the construction of recurrence networks and inter-

preting the network mesures used to quantify the recurrence networks such as degree

distribution, characteristic path length, betweenness centrality etc. An extension of uni-

variate recurrence networks to bivariate recurrence networks such as joint recurrence

networks and cross recurrence networks which will help in investigating synchroniza-

tion phenomenon between two oscillators. We also mention a few synchronization

measures which are based on recurrences in phase space.

2.1 Historic overview

We see networks everywhere. Social networks, ecological networks, transportation net-

works, brain networks, climate networks etc., are a few examples. Network are con-

structed based on interactions between several components in a system. If these in-

teractions give rise to emergence of self organization, we can consider the system as

complex system and the networks constructed are called complex networks (Bar-Yam,

1997). To summarize the importance of complex networks in the words of an expert

in the field of complex networks, Barabasi 2011 "Therefore, if we are ever to have a

theory of complexity, it will sit on the shoulders of network theory."

Network science is based on graph theory and statistical physics. Networks consist

of nodes with edges between them. Euler in 1736, made the first use of graph theory to

solve the infamous KÃűnigsberg bridge problem. The use of complex networks became



extensive after the discovery of scale free (Barabási and Albert, 1999) and small world

networks (Watts and Strogatz, 1998). The discovery of small world networks came as

an answer to the question "How small is the world?" Milgram 1967 showed an average

of six degrees of separation between any two people in the world.

Watts and Strogatz 1998 developed a model for constructing small world network

and identified the difference between a random network (where two nodes are connected

randomly using a probability) and a regular network (all the nodes are connected to each

other). Small world networks are observed in brain networks, power grids, metabolic

reaction networks, protein-protein interaction networks and scientific co-authorship net-

works (Boccaletti et al., 2006).

Barabasi and Bonabeau 2003 discovered scale free networks and reported that world

wide web, airport networks, internet, research collaborations have a very inhomoge-

neous connectivity pattern setting them apart from regular and random networks. They

observed that a few nodes have very high connections (hubs) whereas a large number

of nodes have few connections but are connected to the hubs. The degree distribution of

scale free networks follow a power law P (k) = k−γ , where P (k) is the probability of

finding a node with k connections. The scale free networks are very robust to random

attack but quite susceptible to targeted attack on hubs.

Hence, the network topology can reveal complex characteritics of the system which

are different from a regular and a random network. We now discuss the various methods

to construct networks from time series.

2.2 From Time Series To Complex Networks

Time series is a reflection of the complex spatiotemporal behavior observed in the sys-

tem. The topologies of the networks constructed from the timeseries acquired from a

complex system help unveil information about the collective behavior and identify any

hidden patterns in networks.

There are several methods to construct time series into complex networks. The con-

struct techiniques involve cyclic networks, k-nearest neighbourhood methods, visibility

networks, recurrence networks etc., to name a few. Zhang and Small 2006 constructed
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cyclic networks from pseudo-periodic time series. The networks are constructed based

on temporal correlations between two cycles in the time series. Lacasa et al. 2008 and

Luque et al. 2009 introduced visibility and horizontal visibility graphs. The networks

are constructed from the peaks of time series, if they satisy a visibility criterion. The

network measures are related to the fractal dimension of the timeseries.

Donner etal. 2011 introduced recurrence networks. The networks are constructed

based on a propery, recurrence, a fundamental property of any deterministic dynami-

cal system. The network is constructed based on the recurrence of state space vectors

reconstructed from a time series. While converting time series into complex network

using visibility algorithm, information related to the geometry and structure of the at-

tractor is lost. In order to preserve the geometric characteristics of the attractor, we use

ε−recurrence networks (RN). Further, as recurrence is a fundamental property of any

dynamical system, the rationale behind constructing complex networks from time series

using recurrence networks is natural and simple than visibility networks (Marwan et al.,

2009). RN does not depend on temporal correlations explicitly. Thus RN is more robust

than other methods that consider temporal correlations, in cases where there is external

noise in the system. Constructing RN from a time series requires lesser number of data

points than those required for computing Lyapunov exponent. Hence, measures derived

from RN are well suited to discriminate between chaotic and periodic state compared

to Lyapnov exponent when a shorter time series is available (Donges et al., 2011).

By considering the advantages of RN, we use RN in present study. The subsequent

sections provide a brief description of network construction technique.

2.3 Recurrence Networks

There are several methods to generate complex networks from a time series. ε- recur-

rence method is one of them. In this method, we compute the recurrences of phase

space vectors after reconstructing the phase space using Takens embedding theorem

(Takens, 1981). The discretely sampled experimental time series x(1), x(2), ...x(NT ) is

embedded in an M-dimensional phase space using an appropriate time delay, where NT
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is the total number of points in the time series. The delay vectors are given by

X(ti) = x(i), x(i+ τ), ......, x(i+ (M − 1)τ) (2.1)

In this paper, the embedding dimension M is chosen using Cao’s algorithm (Cao,

1997). The first minimum of the average mutual information is chosen to be the time

delay for computing delay vectors from the discretely sampled time series.

A state (phase space vector) X(ti) is said to be recurrent if there are ti and tj such

that d(X(ti), X(tj)) < εwhere d(X(ti), X(tj)) is the distance between the phase space

vectors X(ti), X(tj) computed using the Euclidean norm. Under general conditions,

the structure of recurrences in phase space can be encoded in the recurrence matrix

(Eckmann et al., 1995; Marwan et al., 2007).

Ri,j = θ (ε− ‖X(ti)−X(tj)‖) (2.2)

Here, θ is the Heaveside function.

There are some quantification measures derived from recurrence matrices to quan-

tify the dynamics of the time series. The analysis is called as recurrence quantification

analysis (RQA). We shall discuss a few measures in the section 2.3.

We consider only spatial interdependencies in recurrence networks. To construct

the recurrence network from the time series, we use the adjacency matrix constructed

using recurrence matrix according to the relation,

Ai,j = Ri,j − δi,j (2.3)

The adjacency matrix provides the information regarding the nodes and the connec-

tions between them. If Ai,j = 1 then the nodes i, j are connected, which implies that

the state space vectors are in a proximity of recurrence threshold ε in the phase space.

The measures derived from recurrence matrix characterizes the dynamical prop-

erties of phase space trajectories in contrast to the measures derived from RN which

describe the geometrical properties of the attractor. A dynamical property characterizes

the dynamics of the system i.e,. regular or irregular dynamics whereas a geometrical
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property characterizes the geometry and structure of the reconstructed phase space. The

main advantage of recurrence network is that it provides additional measures from net-

works to characterize the geometric properties of the attractor and hence provides more

tools for the analysis of time series (Marwan and Kurths, 2015).

A crucial parameter in constructing the network is the recurrence threshold ε. If

the threshold is very large, the network becomes very dense as there are too many

links leading to false recurrences. On the other hand if the recurrence threshold is

too small, the network breaks down into mutually disjointed components. Hence the

network characteristics can become ambiguous. The recurrence threshold is chosen by

the approach proposed by Jacob et al. 2016 which determines an admissible range for

ε. Hence, the choice of the recurrence threshold is not arbitrary.

In the next subsection, we provide a brief description of the measures derived from

RN such as degree distribution, characteristic path length and betweenness centrality.

2.3.1 Measures describing the topological properties of the network

The following measures are computed from the adjacency matrix A which encodes the

information related to the connectivity of each node (Donner et al., 2011).

Degree Distribution

Degree distribution is the graph plotted between P(k) and k where P(k) is the probability

of a given node to have a degree k. P(k) is given by n(k)/N where n(k) is the number

of nodes having the degree k and N is the total number of nodes. The degree of a node

ki represents the connectivity of the node. The degree of a node i is the sum of all

the elements in the ith row of Adjacency matrix. As the topology of RN represents the

structure of the attractor, local connectivity is related to local phase space density of the

attractor (Donner et al., 2011). Thus, the variation in the degree distribution reflects the

variation of the local phase space density over the attractor.
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Betweenness centrality

Betweenness centrality computes the fraction of shortest paths passing through a vertex

(node).

bv =
N∑

i,j 6=v

σ̂i,j(v)

σ̂i,j
(2.4)

where, σ̂i,j gives the number of shortest paths between two nodes i and j. σ̂i,j(v) gives

the number of shortest paths between the nodes i and j that are passing though the node

v. Betweenness centrality determines bottleneck nodes or the regions of low phase

space density that connect two regions of high phase space density.

Characteristic path length

Characteristic path length is the average of the length of the shortest paths between two

nodes.

CPL =
1

N(N − 1)

N∑
i,j−1

di,j (2.5)

where di,j is the length of the shortest path between a pair of nodes (i, j) which is

nothing but the minimum number of links between node i and node j. We do not

consider disconnected nodes while calculating CPL.

2.4 Analysis of coupled behavior using bivariate recur-

rence plots and networks

The coupled behavior of two oscillators is studied using the multivariate recurrence

matrices ((Romano et al., 2004)). The univariate recurrence matrix R can be extended

as joint and cross recurrence matrices to study the coupled behavior of the oscillators.

The joint recurrence matrix (JRM ) is computed by the element-wise multiplication

of the individual recurrence matrices (RX , RY ) of the two oscillators X and Y . If the

delay vectors of the two oscillators are denoted by V and W , respectively, then

JRMij = Θ(εV − ‖Vi − Vj‖)Θ(εW − ‖Wi −Wj‖) (2.6)
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JRM captures the presence of simultaneous recurrences of the phase trajectories of

both the oscillators. If the states Vi and Wi recur simultaneously, then JRMij = 1;

otherwise JRMij = 0.

The cross recurrence matrix (CRM ) compares the states of the two oscillators in

the same reconstructed phase space, and is computed as follows

CRMij = Θ(εVW − ‖Vi −Wj‖) (2.7)

CRM captures the presence of similar states in both the oscillators. If CRMij = 1, then

the state of one oscillator recurs to the state of the other oscillator. Unlike R and JRM ,

the CRM is not necessarily symmetric. The threshold (εVW ) is chosen such that the

cross recurrence rate is fixed.

In order to link the recurrent behavior of two oscillators to detect synchronization

between them, a measure of probability of recurrence P (τ ), also referred to as τ -

recurrence rate, was introduced by Romano et al. 2005. P (τ ) measures the probability

with which a given state vector of the trajectory of a single oscillator recurs after a time

lag τ .

P (τ) =
1

N − τ

N−τ∑
i=1

Θ(εV − ‖Vi − Vj‖) (2.8)

The type of synchronization is characterized based on the locking of the location

of the peaks as well as their heights in the P (τ ) plots of the two oscillators. Further

details on the use of probability of recurrence plots to detect the synchronization states

in thermoacoustic system are given in Pawar et al. 2017.
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2.4.1 Measures to quantify the coupled behavior of oscillators using

recurrence plots

Determinism (DET)

Determinism (DET ) measures the percentage of recurrence points in a recurrence ma-

trix which form diagonal lines of minimum length lmin.

DET =

∑N
l=lmin

lF (l)∑N
l=1 lF (l)

(2.9)

where F (l) is the frequency distribution of the lengths of the diagonal lines andN is the

number of state vectors in the reconstructed phase space. When the dynamics is peri-

odic, RP comprises only of diagonal lines and hence DET attains the maximum value

of 1. Thus, DET can be used to detect the occurrence of periodic and quasiperiodic

dynamics in the system.

Recurrence rate (RR)

Recurrence rate (RR) measures the average number of recurrences present in a recur-

rence matrix, R

RR =
1

N2

N∑
i,j=1

Rij (2.10)

RR attains the maximum value of 1 when all the state vectors are recurring in the

reconstructed phase space. We fixRR of the recurrence matrices of p′ and q̇′ to compare

across different states.

Correlation of probability of recurrence (CPR)

Correlation of probability of recurrence (CPR) is the cross correlation of the probabil-

ity of recurrences of the two oscillators.

CPR =

〈
P̄1(τ > τc)P̄2(τ > τc)

〉
σ1σ2

(2.11)

Here, P̄1 and P̄2 are the mean subtracted values of P1 and P2, and σ1, σ2 are the stan-

dard deviations of P̄1(τ) and P̄2(τ), respectively. We use the modified form of CPR
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proposed by Goswami et al. 2012 and consider only those lags (τ ) which are greater

than the lag (τc) at which the autocorrelation of the signal is lesser than 1/e to exclude

the effect of autocorrelation. The value of CPR ranges between -1 and 1. If both the

oscillators are phase synchronized, then the location of the peaks of both P1(τ ) and

P2(τ ) coincide. Hence, the CPR reaches its maximum (closer to 1) and can be used as

an index to detect PS (Romano et al., 2005).

Joint probability of recurrence (JPR)

Joint probability of recurrence (JPR) is the average probability of joint recurrences in

time, whose value can be obtained as follows

JPR =
RRJ

RR
−RR

1−RR
(2.12)

where RRJ is the joint recurrence rate and RR is the recurrence rate of the individual

recurrence matrices. The joint recurrence rate is given by,

RRJ =
1

N2

N∑
i,j=1

JRMij (2.13)

During the regime of generalized synchronization (GS), we expect similar value ofRRJ

as that of individualRR of both the oscillators. Hence, JPR becomes closer to 1 during

the GS state and can be used as an index to detect the GS state (Romano et al., 2005).

All the above measures are based on the individual and joint recurrence matrices

computed from the time series of coupled oscillators. We now describe measures de-

rived from the joint and cross recurrence networks. These networks are based on geo-

metric signatures of the attractors in the phase space.
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2.4.2 Measures to quantify the coupled behavior using recurrence

networks

We construct recurrence networks from recurrence matrices?. The adjacency matrix

(Aij) is computed from Rij as follows

Aij = Rij − Iij (2.14)

where Iij is the identity matrix, i.e. we subtract the identity matrix from the R to

discount self connected nodes in the network. The nodes in the recurrence network cor-

respond to the state vectors in the reconstructed phase space. Two states are connected

with a link, if they recur.

For studying the coupled behavior of two oscillators, networks are constructed from

JRM and CRM , respectively. The measures computed from the recurrence networks

are described below.

Network transitivity (T )

Network transitivity computes the number of closed triangles in a network given that

two among those three nodes are connected (Newman, 2003).

T =

∑N
i,j,k=1AijAjkAki∑N
i,j,k=1AijAjk

(2.15)

In order to study the coupled behavior of two oscillators, the joint transitivity (TJ ) is

used, which is the transitivity of the joint recurrence network. During GS, TJ is high due

to the increase in the occurrence of simultaneous recurrences. Feldhoff et al. (Feldhoff

et al., 2013) introduced a normalized measure, the transitivity ratio (QT ), which is the

ratio of joint transitivity to the individual transitivities, TX and TY of the two oscillators

X and Y .

QT =
2TJ

TX + TY
(2.16)

Here, QT will reach its maximum (around 1) during the occurrence of GS and hence

can be used as an index to detect GS.
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Cross transitivity

Cross transitivity, TXY , is the probability that two nodes in the recurrence network of

the second oscillator (Y ) are connected given that they are neighbors to a node in the

recurrence network of the first oscillator (X). In other words, it measures the number

of triangles with two vertices in one network and the third vertex in the other network

(Feldhoff et al., 2012). The interlinks between the two networks are obtained using

CRM . CRM is not necessarily symmetric and hence, TXY need not be the same as

TY X . This inequality can be used to characterize the directional dependence of the two

oscillators (Feldhoff et al., 2012).
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CHAPTER 3

EXPERIMENTAL SETUPS AND MEASUREMENT

TECHNIQUES

In this chapter, we provide a description of the experimental setup and various mea-

surement techniques. e perform experiments on a laboratory-scale backward facing

step turbulent combustor. We systematically vary the control parameter (air flow ve-

locity andd equivalence ratio (φ)) and study the dynamics at different dynamical states

of combustor operation. We acquire the acoustic data using a pressure transducer and

spatially averaged global heat release rate using photomultipler tube (PMT). The exper-

imental setup is same as the one used by (Pawar et al., 2017; Unni and Sujith, 2015).

3.1 Experimental rig : TARA

Setup Description

The experiments were conducted in a laboratory scale combustor having a partially

premixed turbulent flame as shown in Fig. 3.1. The setup is named as TARA Thermo-

Acoustic Rig for Axial Instability).The experimental setup consists mainly of three

parts: i) a settling chamber, ii) a burner, and iii) a combustor. The air is first passed

through the settling chamber, which reduces the unsteady hydrodynamic fluctuations

and eddies at the air inlet from the flow inside the combustion chamber. In the burner,

fuel (Liquefied Petroleum Gas; propane 40% and butane 60% by volume) is partially

mixed with the incoming airflow from the settling chamber at different equivalence

ratios. This partially premixed fuel-air mixture then enters into the main combustor

section. The combustor is a rectangular duct which is 1400 mm long and 90 mm ×

90 mm wide, and has a backward facing step (dump plane) at the inlet. A bluff body,

circular disc of diameter 47 mm and thickness 10 mm, is located at a distance of 4.5

mm from the inlet of the combustor.



Figure 3.1: A schematic of the bluff body stabilized turbulent flame combustor.

The air and fuel flow rates are controlled separately by using mass flow controllers

(Alicat Scientific, MCR 2000SLPM - for air, and MCR 100SLPM - for fuel; uncertainty

is±0.8% of measured reading +0.2% of full-scale reading) in the system. In bluff body

combustor, the fuel flow rate is maintained at a constant value of 25 slpm and the air

flow rate is varied from a value of 400 slpm to 940 slpm such that the flow field in the

system is turbulent (Re = 1.09× 105 to Re = 2.12× 105) throughout the experiment.

The estimated uncertainties in Re are ±1.97 × 103 to ±2.71 × 103. The equivalence

ratios range from 0.95 ± 0.02 to 0.46 ± 0.01. In swirl combustor, the fuel flow rate is

maintained at a constant value of 21 slpm and the air flow rate is varied from a value of

330 slpm to 950 slpm. For the purpose of initial ignition, a spark plug (along with 11

kV ignition transformer - National Engineering Corporation), fixed at the dump plane,

is used to ignite the combustible air-fuel mixture. Quartz windows of size 90 mm× 360

mm, located on both the side walls of the combustor, provide optical access required

for the measurement of heat release rate fluctuations from the flame.

Measurements and Data Acquisition

We measure the acoustic pressure fluctuations (p′) from the combustor using a piezo-

electric transducer (PCB Piezotronics, PCB103B02, with a sensitivity of 223.4 mV/kPa,

and an uncertainty of ±0.15 Pa). The pressure transducer is fixed on the top wall near

the inlet step of the combustor. This position of the transducer corresponds to a near

maximum amplitude of the acoustic pressure in the duct. It is an appropriate location

for the measurement of the acoustic pressure in this combustor, as it always remains

a pressure antinode for all the acoustic modes of the duct. The unsteady heat release

rate fluctuations (q̇′) are captured by using a photomultiplier tube, PMT, (Hamamatsu
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H10722-01). A CH* bandpass filter (wavelength = 432 nm and 10 nm FWHM), which

captures the CH∗ chemiluminescence intensity from the flame, is used to filter the in-

put to the PMT. The chemiluminescence intensity thus recorded is a measure of the heat

release rate from the flame. The PMT is positioned at a distance 500 mm normal to the

combustor wall near the location of the bluff body. The signals of the pressure fluctua-

tions and the heat release oscillations were acquired for 3 s at a sampling frequency of

10 kHz. A 16-bit analog to digital (NI-6143) card is used for the data acquisition. Since

our main objective in the present study is to analyze the synchronization characteristics

of p′ and q̇′, we directly use the raw (mean subtracted) signals obtained in voltage from

the pressure transducer and the PMT throughout our analysis.
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CHAPTER 4

ANALYSIS OF TRANSITIONS TO

THERMOACOUSTIC INSTABILITY AND

BLOWOUT USING RECURRENCE NETWORKS

The present chapter discusses the complex network approach to unravel the pattern or

dynamical features in the dynamics of the thermoacoustic systems. The transition to

thermoacoustic instability and blowout are investigated. First, the scale invariance of

combustion noise generated from turbulent reacting flows in a confined environment is

investigated using complex networks. The time series data of unsteady pressure, which

is the indicative of spatio-temporal changes happening in the combustor, is converted

into complex networks using the visibility algorithm which is explained in the previous

chapter. We examine the presence of powerlaw behaviors in the degree distributions of

the RNs constructed during various dynamical regimes. The topological measures such

as characteristic path length and betweenness centrality are evaluated to quantify the

changes in combustion dynamics. These topological measures of networks that vary

significantly well before the transition to flame blowout are used as the precursors to

detect an impending blowout in the combustion systems.

4.1 Time Domain Analysis of Acoustic Pressure Fluctu-

ations

We observe the transitions from combustion noise to thermoacoustic instability and

then to lean blowout as the equivalence ratio (φ) is varied. We varied the equivalence

ratio (φ) from 0.98 to 0.29 in this study. When the equivalence ratio is closer to 1,

we observe combustion noise and when we approach the equivalence ratio of 0.29,

The results presented in this chapter are published in V. Godavarthi, V. R. Unni, E. A. Gopalakrish-
nan, R. I. Sujith, Recurrence networks to study dynamical transitions in a turbulent combustor Chaos:
An Interdisciplinary Journal of Nonlinear Science, 27(6), 063113. (2017).



blowout occurs. The time series of acoustic pressure is plotted for various equivalence

ratios in Fig. reffig.2. When the equivalence ratio is 0.98, we observe combustion

noise composed of aperiodic fluctuations (Fig. 5.2(a)). When the equivalence ratio is

0.8, we observe intermittency (Fig. 5.2(b)) which consists of large amplitude periodic

fluctuations amidst aperiodic oscillations. The equivalence ratio is reduced to 0.77 (Fig.

3c), the number of intermittent bursts is increased and the onset of periodic oscillations

can be seen when the equivalence ratio is further reduced to 0.74 (Fig. 5.2(d)). As the

equivalence ratio is further reduced to 0.5, we observe thermoacoustic instability (Fig.

5.2(e)). On further reduction of equivalence ratio to 0.47, we observe that intermittency

sets in (Fig. 5.2(f)). The equivalence ratio is further reduced to 0.44, the amplitude and

the duration of the periodic bursts in intermittency is decreased (Fig. 5.2(g)). When the

equivalence ratio is reduced to 0.29, we observe low amplitude aperiodic oscillations

(Fig. 5.3(h)). If we reduce the equivalence ratio further, the flame blows off.

Thus, as we progress from combustion noise to thermoacoustic instability, the peri-

odicity of the signal increases. We also observe that on further reduction of equivalence

ratio, during the transition from thermoacoustic instability to lean blowout, the period-

icity of the signal decreases. On further reduction in equivalence ratio, prior to lean

blowout the periodicity of the time series signal is lost. This can be seen from the

power spectra of time series (FFT). The power spectra of the same pressure time series

is plotted by Unni and Sujith 2015. During combustion noise there is no dominant fre-

quency and as we approach thermoacoustic instability, there is a dominant frequency of

about 120 Hz. As we approach lean blowout limit, the periodicity is lost and there is no

dominant frequency in the time series signal. Further, Unni and Sujith 2015 observed a

slight variation in the dominant frequency as the equivalence ratio is varied which was

attributed to varying flame dynamics.

4.2 Analysis of Dynamics Using Recurrence Networks

A crucial parameter in constructing the network is the recurrence threshold ε. If the

threshold is very large, the network becomes very dense as there are too many links

leading to false recurrences. On the other hand if the recurrence threshold is too small,

the network breaks down into mutually disjointed components. Hence the network char-
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Figure 4.1: (a)-(h) The time series of the acoustic pressure (p′) signal obtained from
experiments at equivalence ratios, (a) 0.98, (b) 0.8, (c) 0.77, (d) 0.74, (e)
0.5, (f) 0.47, (g) 0.44, (h) 0.29 respectively.

acteristics can become ambiguous. After embedding, the size of the attractor depends

on the range of the signal. The time series data is transformed into uniform deviate.

Thereby, the attractor size is rescaled into the interval [0,1].

A random time series is generated and the embedding dimension is chosen to be

the same as that of the time series of acoustic pressure obtained from the combustor.

Recurrence networks are then constructed from the time series data of acoustic pressure

and the random time series. The characteristic path length (CPL), the average of the

shortest paths between two nodes, is computed for the networks constructed from time

series data of acoustic pressure and from random time series. The brief description

of CPL is provided in the next subsection . The CPL of RN constructed from the
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Figure 4.2: Variation of the characteristic path length (CPL) of recurrence networks
with threshold, constructed from both random time series and the time se-
ries corresponding to combustion noise. The time series corresponding to
combustion noise is embedded in M = 10 dimensions and the random time
series is also embedded in the same dimension.

time series acquired during combustion noise decreases with increase in the threshold

beyond ε1 (Fig. 5.1). When the threshold is ε1, then a cluster of nodes is formed. Thus,

further increase in threshold results in an effective decrease in CPL as the degree of

each node increases. When the recurrence threshold is greater than ε2, the CPL of

the time series corresponding to combustion noise becomes nearly the same as that of

random time series. This is due to the false recurrences. Hence the upper bound and

lower bound are fixed for the recurrence thresholds as ε1 = 0.2 and ε2 = 0.4 respectively.

We use ε = 0.25 for our present work. Having an ε above the lower threshold ensures

that the network has no disconnected nodes. Having the threshold ε below the upper

threshold also ensures that RN constructed from the time series of acoustic pressure is

different from the RN constructed from a random time series.

The adjacency matrix obtained from the recurrence matrix represents the topology

of the network. Figure 5.3 represents the network topologies corresponding to various

dynamical regimes in the turbulent combustor. The network topology is visualized us-

ing Gephi (https://gephi.org/) software. Figure 5.3(a) represents the network topology

for combustion noise. Figure 5.3(b) represents the network topology for intermittency

prior to thermoacoustic instability. Figure 5.3(c) represents the network topology for
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thermoacoustic instability. The structure of the attractor is a limit cycle for thermoa-

coustic instability as the time series of acoustic pressure is periodic. Figure 5.3(d) rep-

resents the network topology for intermittency just after thermoacoustic instability. The

attractor corresponding to the intermittency before thermoacoustic instability is differ-

ent from that of the intermittency just after thermoacoustic instability. This is because

the periodic bursts during intermittency, occurring past thermoacoustic instability are

present for a longer duration in contrast to the periodic bursts during the intermittency

prior to thermoacoustic instability. Figure 5.3(e) represents the network topology for

the aperiodic oscillations prior to lean blowout. We can observe that the network topol-

ogy resembles the geometry of the attractor. Thus, we can reaffirm that RN preserves

the geometry of the attractor. Figure 5.3(f) represents the network topology for white

noise. We observe that the attractors corresponding to the time series of acoustic pres-

sure are significantly different from the attractor corresponding to white noise. We can

also observe that, the nodes in the networks corresponding to that of combustion noise

(Fig. 5.3(a)) and low amplitude aperiodic oscillations prior to blowout (Fig. 5.3(e))

have lower degree compared to the degree of the nodes in the networks corresponding

to intermittency and thermoacoustic instability. The degree of the nodes in the network

corresponding to white noise is very less compared to the RNs constructed from the

time series of acoustic pressure.

4.2.1 Variation of degree distribution with recurrence threshold

We say that the degree distribution follows a power law if P(k) = k−γ where γ is the

power law exponent. We study the variation of log(P(k)) vs log(k) with the recurrence

thresholds, ε = 0.2, 0.25, 0.3, 0.35 for the RNs constructed from the time series data of

acoustic pressure for various dynamical states.

Figures 5.4 and 4.6 depict the variation of degree distribution of RN constructed

from time series acquired during combustion noise (φ = 0.98) and aperiodic oscillations

prior to lean blowout (φ = 0.29). We can observe that the degree distribution follows

power law for the thresholds 0.2, 0.25. As the threshold increases, a significant portion

of the degree distribution do not follow a power law. Theoretically, we say that there

is power law, if the whole distribution follows a power law i.e., there should not be

any outliers. As we are considering time series from a practical system, the entire
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Figure 4.3: The topologies of recurrence networks constructed from the time series of
acoustic pressure for the equivalence ratios (a) 0.98 (combustion noise), (b)
0.8 (intermittency prior to thermoacoustic instability), (c) 0.5 (thermoacous-
tic instability), (d) 0.47 (intermittency just after thermoacoustic instability),
(e) 0.29 (oscillations prior to lean blowout), (f) white noise. The networks
are constructed from 2000 data points and the recurrence threshold is 0.25.
The colorbar shows the variation of the color with the degree of the nodes.
This figure reaffirms that RN preserves the geometry of the attractor.

degree distribution may not follow a power law. We need to account for some outliers.

In our present work, we consider a degree distribution to follow a power law if more

than 90% of the points in the degree distribution follow a power law. Figures 7, 4.7

and 4.8 depict the variation of the degree distribution of RN constructed from the time

series acquired during intermittency before thermoacoustic instability (φ = 0.8), during

thermoacoustic instability (φ = 0.5) and during intermittency just after thermoacoustic

instability (φ = 0.47). We can see that the degree distribution does not follow power

law for any of the chosen thresholds.

The long term distribution (invariant measure) of the phase space vectors of a dy-

namical system is associated with a probability distribution (Junge, 2012) of an invariant

measure. The time for which a state stays at a particular location in phase space can be

associated with an invariant density at that location. Thus a probability distribution can

be associated with the invariant density distribution over the attractor. The degree dis-

tribution determines the local connectivity pattern of a node. As the recurrence network
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Figure 4.4: The variation of log(P(k)) vs log(k) of recurrence networks constructed from
the time series corresponding to combustion noise (φ = 0.98) with various
thresholds ε = 0.2, 0.25, 0.3, 0.35 respectively. We can see that the power
law is significant at lower thresholds.

preserves the geometry of the attractor there is a direct mapping between the degree

distribution and the invariant density over the attractor (Jacob et al., 2016). Therefore,

the presence of power law in the degree distribution can be attributed to the presence

of power law in the invariant density function. In a strict sense, if the invariant density

function has a power law peak at some state X0, i.e., of the form f(X − X0)
−λ, for

some λ > 0, then X0 is a singularity. In a general case, if the invariant density function

is close to power law at the state X0, this results in power law in degree distribution.

The invariant density in phase space is maximum near the singularity, hence the phase

space trajectories closer to the singularity tend to converge and the recurrence rate will

be more near the singularities. The nodes closer to the singularity have very high degree

when compared to the nodes which are away from the singularity.

We observe that, the presence of power laws in the degree distribution of RNs cor-

responding to combustion noise and the oscillations prior to lean blowout is significant

only at lower thresholds such as 0.2 and 0.25. This is because, the threshold corresponds
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Figure 4.5: The variation of log(P(k)) vs log(k) of recurrence networks constructed from
the time series corresponding to intermittency prior to thermoacoustic insta-
bility (φ = 0.8) with various thresholds ε = 0.2, 0.25, 0.3, 0.35 respectively.
We can see that the degree distribution does not follow a power law.

to the local correlations over the reconstructed attractor in the phase space. We can state

that for higher thresholds, the singularities which are local properties are masked by too

many links. The invariant density changes as the recurrence threshold changes and

hence the power law exponent also varies with the threshold. Further, Jacob et al. 2016

have reported that the recurrence networks from chaotic attractors with continuous in-

variant density function does not exhibit scale free topology. As there are power law

degree distributions in RNs correponding to combustion noise and oscillations prior

to lean blowout, we can state that the invariant density distribution over the attractors

corresponding to combustion noise and the oscillations prior to lean blowout has singu-

larities when lower thresholds such as 0.2 and 0.25 are used.
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Figure 4.6: shows the variation of log(P(k)) vs log(k) of recurrence networks con-
structed from the time series corresponding to low amplitude aperiodic os-
cillations prior to lean blowout. (φ = 0.29) with various thresholds ε = 0.2,
0.25, 0.3, 0.35 respectively. The width of the degree distribution is less and
the power law is significant for lower thresholds.

4.2.2 Variation of measures derived from RN with equivalence ra-

tio

We proceeded to determine the impending transitions from combustion noise to lean

blowout using measures such as characteristic path length and betweenness centrality

derived from RN.

For the construction of RN from the time series of acoustic pressure, we consider ε =

0.25 for the calculation of topological measures of the network as this threshold ensures

that there is a single component in the network without any disconnected nodes. The

recurrence threshold ε also ensures that the RN constructed from the time series cor-

responding to combustion noise is different from the RN constructed from a stochastic

process (white noise).

For most of the recurrence networks, the plot between P(k) and k depends on the
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Figure 4.7: The variation of log(P(k)) vs log(k) of recurrence networks constructed from
the time series corresponding to combustion instability (φ = 0.5) with var-
ious thresholds ε = 0.2, 0.25, 0.3, 0.35 respectively. We can see that the
degree distribution does not follow a power law.

number of data points used for the construction of RN. The degree distribution shifts to

the right with increase in the number of data points (N) that are used to construct RN as

the average degree increases with N. In order to avoid this dependence on N, the graph

is plotted between the rescaled variables P(k)N and k/N (Jacob et al., 2016) for various

equivalence ratios as shown in Fig. 4.9. Figure 4.9(a) to Figure 4.9(e) correspond to

the degree distributions of combustion noise, intermittency prior to thermoacoustic in-

stability, thermoacoustic instability, intermittency just after thermoacoustic instability

and the oscillations prior to lean blowout respectively. Figure4.9(f) corresponds to the

degree distribution in the network corresponding to white noise. In order to provide

vivid variation of degree distributions corresponding to combustion noise and the oscil-

lations prior to lean blowout, zoomed in views are plotted in Fig. 4.9(g) and Fig. 4.9(h)

respectively.

As we decrease the equivalence ratio from 0.98 to 0.5, the degree distribution shifts

to the right. The degree distribution of RN corresponding to thermoacoustic instability
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Figure 4.8: The variation of log(P(k)) vs log(k) of recurrence networks constructed
from the time series corresponding to intermittency (φ = 0.47) with vari-
ous thresholds ε = 0.2, 0.25, 0.3, 0.35 respectively. We can see that the
degree distribution does not follow a power law for these thresholds.

(Fig. 4.9(c)) is concentrated at a higher degree indicating higher connections. Hence,

the phase space density at those locations is high over the attractor. We can also see in

Fig. 4.9(c) that there is a single prominent peak. Such a peak in the degree distribution

concentrated at higher degree corresponds to a periodic signal. This reaffirms that ther-

moacoustic instability is periodic. The degree distribution corresponding to φ = 0.47

(Fig. 4.9(d)), has multiple peaks in the degree distribution and the degree distribution

is broad. Similarly, the degree distribution corresponding to the equivalence ratio φ =

0.8 (Fig. 4.9(b)) is also wide spread. This implies that there are large fluctuations in

phase space density over the attractor. During the intermittent regime, there are large

amplitude periodic fluctuations amidst the aperiodic oscillations, hence leading to the

fluctuations in the local phase space density over the attractor.

We observe that the degree distribution shifts to the left, when we decrease the

equivalence ratio from φ = 0.5 to φ = 0.29 and becomes more concentrated towards

lower degree. This implies that the link density of RN constructed from the time se-
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Figure 4.9: The variation of degree distribution of the RNs constructed from the time
series data of acoustic pressure with equivalence ratios (a) 0.98 (combus-
tion noise); (b) 0.8 (intermittency before thermoacoustic instability); (c) 0.5
(thermoacoustic instability); (d) 0.47 (intermittency just after thermoacous-
tic instability); (e) 0.29 (oscillations prior to lean blowout); and (f) white
noise. There is only one point (abscissa is zero) in degree distribution cor-
responding to white noise as there are no connections in RN when ε = 0.25.
The zoomed in views of the degree distributions of (g) combustion noise
and (h) oscillations prior to lean blowout are shown for clear visibility of
the degree distribution. We used N = 10000 data points and ε = 0.25.

ries data prior to lean blowout is less. The duration of the periodic bursts in the signal

decreases as the transition occurs from thermoacoustic instability to blowout. As the re-

currence rate is less, the phase space density is less which results in a shift in the degree

distribution towards the left as the transition happens from thermoacoustic instability

to blowout. Therefore, the recurrence rate decreases and also the average degree of the

nodes decreases.

The peak in the degree distribution in the RN corresponding to the oscillations prior

to lean blowout is concentrated towards lower degree than in the RN corresponding to

combustion noise (Fig. 4.9). As the degree distribution can be mapped to the phase
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Figure 4.10: Variation ofCPLwith equivalence ratio. CPL is high for RN correspond-
ing to combustion noise and decreases as we approach thermoacoustic in-
stability. CPL again increases as we approach lean blowout limit. CPL
varies with the dynamical regime. Hence CPL can be used to detect the
transitions from combustion noise to thermoacoustic instability and the
transitions from thermoacoustic instability to lean blowout. We used N =
5000 data points and ε = 0.25.

space density, the average density in phase space is less for the oscillations prior to

lean blowout. This results in a lower degree of recurrence for the oscillations prior to

blowout. We also observe that the degree of all the nodes is zero in the RN correspond-

ing to white noise (Fig. 4.9(f)). This is because there are no connections between the

nodes in the RN constructed from white noise using the threshold ε = 0.25 (Fig. 5.1).

Figure 4.10 shows the variation of CPL with equivalence ratio. CPL is minimum

for the RN corresponding to thermoacoustic instability and maximum for the RN cor-

responding to the oscillations prior to blowout. CPL measures the spatial distance

between two nodes which are nothing but two states. For a periodic signal, the recur-

rences in the phase space are more and hence the shortest path between two nodes is less

and CPL is minimum for thermoacoustic instability. CPL is high for the oscillations

prior to lean blowout and combustion noise as the average degree and the recurrence

rate is less when compared with thermoacoustic instability.

Figure 4.11 shows the variation of the average betweenness centrality with equiv-

alence ratio. We observe lower values of betweenness centrality for thermoacoustic

instability and very high values for combustion noise and the oscillations prior to lean

blowout. Betweenness centrality gives the information related to the presence of regions

with low phase space density that separate the regions of high phase space density. High

values of betweenness centrality indicate that the attractor has high local fragmentation
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Figure 4.11: Variation of logarithmic value of average betweenness centrality in log
scale with equivalence ratio. < bv > is high for the RN corresponding to
combustion noise and decreases as we approach thermoacoustic instability.
< bv > again increases as we approach lean blowout limit. Betweenness
centrality varies with the dynamical regime and hence, can be used to de-
tect the transition from combustion noise to thermoacoustic instability and
the transition from thermoacoustic instability to lean blowout. We used N
= 5000 data points and ε = 0.25.

(Donner et al., 2010). As thermoacoustic instability is periodic, there will be uniform

distribution of the regions with high phase space density. Hence betweenness centrality

is low for thermoacoustic instability.

The network measures characteristic path length and betweenness centrality cap-

ture the transitions from combustion noise to thermoacoustic instability and from ther-

moacoustic instability to blowout. Hence, these measures can be used to measure the

proximity to an impending transition in turbulent combustor, in industrial applications.

4.3 Conclusions

We introduce recurrence networks to study the transitions between the dynamical regimes

in a combustor with turbulent reactive flow, for the first time. We observed that the net-

work topology represents the geometry of the attractor in phase space. The network

topology varies with the dynamical regimes. The network topology of RN constructed

from white noise is completely different when compared with the topologies of RNs

constructed from the time series of acoustic pressure for various equivalence ratios.

The average degree and hence the recurrence and the degree of determinism are higher

for the RNs constructed from the time series of acoustic pressure when compared with
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the RN constructed from white noise. As the transition happens from combustion noise

to thermoacoustic instability, the corresponding topology of the attractor changes from

a complex topology to a limit cycle. During the transition from thermoacoustic instabil-

ity to lean blowout, the topology of an attractor changes from a limit cycle to a complex

topology. Thus, the topology of RN is different for different dynamical regimes. The

plot of degree distribution in RN shows the presence of power law degree distribution

in the recurrence networks constructed from the time series of acoustic pressure corre-

sponding to combustion noise and oscillations prior to lean blowout. The presence of

power law is due to the presence of singularities in the invariant density. We then pro-

ceeded to study the variation of the measures derived from RN with equivalence ratio.

We observed that the variation of the network measures CPL and betweenness central-

ity with equivalence ratio is able to detect the transitions in a turbulent combustor and

hence can be used as early warning signals. We henceforth conclude that RN can be

used as a potential tool to capture the transitions between the dynamical regimes in a

turbulent combustor, in industrial applications.
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CHAPTER 5

STUDY OF INTERACTION BETWEEN ACOUSTIC

FIELD AND UNSTEADY HEAT RELEASE RATE

USING MULTIVARIATE RECURRENCE ANALYSIS

In the previous chapter, we studied the transition of a turbulent gas fired combustor

operation from the state of combustion noise to thermoacoustic instability by analyz-

ing the acoustic pressure signal using recurrence networks. However, it is the positive

coupling between the acoustic field and the unsteady heat release rate fluctuations that

results in the occurrence of ruinous large amplitude acoustic oscillations. Recently,

many studies have been conducted to investigate the transition to such instabilities from

a state of combustion noise through intermittency. As thermoacoustic instability is a

result of coupled behavior between the acoustic pressure and the heat release rate, syn-

chronization theory has been introduced to quantify the coupling between them. Pawar

et al.2017 have found that the periodic oscillations exhibited during the state of ther-

moacoustic instability are of two types, namely weakly periodic and strongly periodic

limit cycle oscillations. The difference between these states can be attributed to the ex-

tent of coupling that exists between the heat release rate and the acoustic oscillations in

the system. Hence, it is important to characterize the synchronization transition to ther-

moacoustic instability in order to detect the occurrence of these dynamical states, and

also the directional dependence between these oscillations. We apply measures derived

from recurrence plots and recurrence networks to detect the synchronization transition

observed during the onset of thermoacoustic instability. Further, we characterize the

directional dependence between the acoustic field and the heat release rate fluctuations

using measures derived from the cross recurrence networks constructed from their time

series.

The results presented in this chapter are published in V. Godavarthi, S. A. Pawar, V. R. Unni, R.
I. Sujith, N. Marwan and Jürgen Kurths, Coupled interaction between unsteady flame dynamics and
acoustic field in a turbulent combustor Vhaos: An Interdisciplinary Journal of Nonlinear Science, 28,
113111 (2018).



5.1 Temporal Analysis of Coupled Behavior of Acoustic

Field and Heat Release Rate Oscillations

The transition of the system’s dynamics from a stable operation (combustion noise)

to an unstable one (thermoacoustic instability) occurs when the equivalence ratio is

decreased from a value close to stoichiometry to a fuel lean condition due to an increase

in the mean flow velocity ū. In this study, the flow velocity is varied from 9.2 m/s to

18.1 m/s. The time series of p′ and q̇′ are plotted in Fig. 5.1.

When the flow velocity is 9.2 m/s, we observe low amplitude aperiodic oscillations

in both p′ and q̇′ (Fig. 5.1(a)). This state is called combustion noise. We observe that p′

and q̇′ oscillate independently during this state. As ū increases from 9.2 m/s to 11.9 m/s,

we observe a transition from combustion noise to intermittency. During intermittency,

there are bursts of periodic oscillations occuring at random intervals amidst epochs of

aperiodic oscillations (Fig. 5.1(b). We find that p′ and q̇′ appear to be locked during

the bursts of periodic oscillations and they appear to oscillate independently during

the aperiodic epochs of oscillations. When ū increases to 12.5 m/s, we observe the

occurrence of weakly periodic LCO (Fig. 5.1(c)). During this state, there is a wide

variation in the cycle-to-cycle amplitude of both the signals, while their phases appear

to be locked in time. A further increase in ū to 16.2 m/s leads to a transition from this

weakly periodic LCO to a strongly periodic LCO (Fig. 5.1(d)). During this state, both

the phases as well as the amplitudes appear to be highly correlated in time.

Pawar et al. 2017 used a measure of synchronization based on the recurrence behav-

ior of the phase space trajectory of the signal, i.e., the plot of probability of recurrence

P (τ ), to characterize the type of synchronization observed during the regimes shown in

Fig. 5.1. They found that the signals are desynchronized during the state of combus-

tion noise (Fig. 5.1(a)). They described intermittency as the state of intermittent phase

synchronization (IPS) where during the bursts of periodic oscillations, both signals are

phase locked and during the aperiodic epochs, the signals are desynchronized. They

reported that during the state of weakly periodic LCO, the signals are phase synchro-

nized (PS) and during the state of strongly periodic LCO, the signals are in a state of

generalized synchronization (GS).

Further, we note that the construction of P (τ ) plots is based on characterizing the

49



Figure 5.1: (a)-(d) The time series of acoustic pressure fluctuations (p′) shown in black
and unsteady heat release rate fluctuations (q̇′) shown in red at mean flow
velocities ū = 9.2, 11.9, 12.5 and 17.2 m/s, respectively.

recurrences in the phase space trajectories of the signal. Therefore, in order to analyze

the coupled behavior of p′ and q̇′ signals, we plot recurrence plots obtained from JRM

and CRM of these signals (shown in Fig. 5.2).

5.1.1 Analysis of synchronization transition using multivariate re-

currence plots

A black dot in JRP (Figs. 5.2(a-d)) represents the presence of simultaneous recurrence

in both signals. During the desynchronized state, we observe irregular points in the JRP

(Fig. 5.2(a)) as the time series of both p′ and q̇′ are aperiodic. The density of the black

dots is low during the desynchronized state due to the lower occurrence of simultaneous

recurrences in p′ and q̇′. During the IPS state, we observe discontinuous diagonal lines

and irregular black patches(Fig. 5.2(b)). This is due to the presence of both weakly

periodic oscillations during the epochs of bursts and low amplitude aperiodic regimes in
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p′ and q̇′, respectively. The presence of discontinuous diagonal lines in Fig. 5.2(c) is due

to the weakly periodic nature of LCO observed during the PS state. During the GS state,

as the signals exhibit strongly periodic LCO and as they share a functional relationship

(Pawar et al., 2017), there are more occurrences of simultaneous recurrences. Hence,

we observe lines parallel to the main diagonal line (Fig. 5.2(d)). From the JRP, we find

that the occurrence of simultaneous recurrences in p′ and q̇′ increases with the onset of

synchronization between p′ and q̇′.

Figures 5.2(e-h) show the CRPs of p′ and q̇′. The cross recurrence rate chosen (0.05)

is lower than the individual recurrence rates (0.08) in order to distinguish the individual

recurrence networks (Feldhoff et al., 2012). CRP encodes the information related to the

presence of similar states in the phase space of the signals. During GS, there are similar

states in both the signals and hence the CRP (Fig. 5.2(h)) looks similar to the JRP (Fig.

5.2(d)). During the desynchronized state, the CRP is completely different from the

individual RPs of p′ and q̇′, as the structures present in CRP are different from that of

JRP. The occurrence of similar states is seen when there is synchronization between the

states. The appearance of these JRPs and CRPs in Fig. 5.2 is specific to our system in

which we observe synchronization transition from an aperiodic state to a periodic state.

These plots will appear differently for other systems where the synchronized state is not

a periodic one.

RP is a graphical tool for visualizing the dynamics of complex systems. The quali-

tative visual description of such plots can be quantified using measures from recurrence

quantification analysis (RQA) (Webber and Zbilut, 1994; Marwan et al., 2002) as given

in the previous chapter. This quantification gives more objective results than a visual

description. The plots of these measures are shown in Fig. 5.3.

Figure 5.3(a) shows the variation of DETJ (eq.2.9) computed from the JRP of p′

and q̇′ with ū. We observe that DETJ becomes maximum and reaches a value closer

to 1 during the occurrence of PS, as the signals observed during this state are weakly

periodic. Thus, DETJ can be used to detect the PS state in this case as we observe

periodic dynamics during the PS state. Figure 5.3(b) depicts the variation of RR of

the joint recurrence matrix with ū. We observe that RRJ (eq. 2.13) increases with

ū. Due to the onset of synchronization, the simultaneous occurrence of recurrences in

JRPs increases which leads to the increase in RRJ . We observe that RRJ is maximum
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Figure 5.2: (a)-(d) Joint recurrence plots (JRP) of p′ and q̇′, and (e)-(h) Cross recurrence
plots (CRP) of p′ and q̇′ for desynchronized, IPS, PS and GS states, respec-
tively. An embedding dimension of 6, a time delay of 2 ms and a fixed
recurrence rate of 0.08 is used for the computation of individual recurrence
matrices and a fixed recurrence rate of 0.05 is used for the computation of
cross recurrence matrix.

during GS and is also able to detect the transition from desynchronized state to PS. The

transition to PS state happens via IPS state which results in the smooth change in RRJ .

RRJ displays a plateau in the plot during the region of PS in the system dynamics.

This further indicates that the recurrence properties of both signals nearly remain the

same, although the flow velocities are sufficiently increased during this state. During

the transition from PS to GS, as the diagonal lines in JRP becomes more continuous

(Fig. 5.2(d)) due to the increase in recurrence behavior of trajectories, their mean RRJ

values exhibit an increase in the plot (Fig. 5.3(b)).

Figure 5.3(c) depicts the variation inCPR (eq. 2.11) and JPR (eq. 2.12) computed

from the P (τ ) plots of p′ and q̇′. We observe that the means of both CPR and JPR

increase with increase in ū. During the PS state, as the location of peaks in P (τ ) plots

of the two signals match (Pawar et al., 2017), CPR becomes closer to 1. Hence it can

be used to detect the PS state. We also observe that CPR shows a slight change during

the transition to GS. On the other hand, we observe that JPR reaches its maximum

during GS and also is able to detect the transition from PS to GS state. The presence of

IPS between the desynchronized state and the PS state results in the smooth change of

these measures.
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Figure 5.3: (a)-(c) Variation of DETJ , RRJ , CPR and JPR with ū, respectively. The
properties are computed for embedding dimension of 6, a time delay of 2 ms
and a fixed RR of 0.08. The signal of length 30000 is divided into windows
of length 3000 and the mean values of the properties are plotted. The error
bars represent the standard deviation.

We find that the measures computed using the recurrence plots and the P (τ ) plots

show the transition from desynchronized state to PS and GS states, and hence, can be

used as indices to detect the PS and GS states in thermoacoustic systems.

5.1.2 Detection of synchronization transition and directional de-

pendence using recurrence networks

Now, we aim to detect the directionality of coupling that exists between p′ and q̇′ during

different dynamical states. We construct joint and intersystem recurrence networks and

compute network properties for this purpose.

Figures 5.4(a-d) are the JRN of p′ and q̇′ obtained during different states of com-

bustion dynamics. The nodes are colored based on their degree and the colorbar to

the right indicates the variation of color with the degree of the node. We uncover that

as the transition occurs from the desynchronized state (Fig. 5.4(a)) to GS state (Fig.

5.4(d)), the degree distribution becomes more uniform and concentrated towards lower

degree (shown by blue color). During desynchronized state (Fig. 5.4(a)), the color of

the nodes varies from blue (lower degree) to red (higher degree). During the GS state

in Fig. 5.4(d), the color of the nodes is almost the same and concentrated towards lower

degree. The topology is similar to a limit cycle. This is a result of the occurrence of

more simultaneous recurrences and the periodic nature of the signals during the GS

state. During the IPS state (Fig. 5.4(b)), we observe that some part of the topology

is similar to a limit cycle, whereas some part is similar to a chaotic structure. Dur-

ing bursts of periodic oscillations, the signals are phase synchronized and hence have
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Figure 5.4: (a)-(d) Topologies of the joint recurrence networks (JRN) constructed from
the joint recurrence matrices and (e)-(h) topologies of the networks con-
structed from the intersystem recurrence networks with the interlinks based
on the cross recurrence matrices (CRN) during desynchronized, IPS, PS
and GS states, respectively. The networks are constructed for 5000 data
points with a fixed recurrence rate of 0.08 for individual recurrence matri-
ces and 0.05 for the cross recurrence matrices. For the purpose of clear
visualization, 500 nodes are considered for JRN and 200 nodes for each
individual network in CRN. We use Force Atlas layout in Gephi software
(https://gephi.org/) for network visualization.

simultaneous occurrence of recurrences and periodic dynamics. During the aperiodic

regions, the signals are desynchornized and we observe a chaotic structure in the net-

work. We observe from Figs. 5.4(c-d) that during the PS state, the limit cycle is wider

when compared with the GS state. This is due to the weakly periodic oscillations ex-

hibited during the PS state and the strongly periodic oscillations observed during the

GS state.

Figures 5.4(e-h) show the network topologies of the individual recurrence networks

of p′ and q̇′ along with the connections between them obtained for different states of

combustion dynamics. The links with the orange color indicate the interconnections

between the p′ and q̇′ networks obtained from the CRM computed using the Euclidean

distance measured from the states in the phase space of p′ to the states in the phase space

of q̇′ (p′ → q̇′). The interlink represents the presence of a state in the same neighborhood

of both the phase spaces, i.e., the interlink connects the nodes which correspond to the

states that are similar to both p′ and q̇′.

During the desynchronized state (Fig. 5.4(e)), the networks of p′ and q̇′ are con-

nected in an irregular fashion and the individual networks do not overlap. This is due
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to the presence of very few similar states. During the IPS state (Fig. 5.4(f)), some

nodes of both networks (red and green color) in some regions are closer, while some

are farther apart. This is due to the phase locking behavior of both the signals during

the bursts which results in the presence of similar states and the desynchronous behav-

ior in the aperiodic parts of the signal. During the PS state (Fig. 5.4(g)), we observe

that the individual networks and the inter connections form a wider limit cycle, whereas

the width of this topology becomes less during the GS state (Fig. 5.4(f)) and hence,

the individual networks appear much closer to each other. The proximity and overlap

between the individual networks observed during the GS state indicate the presence of

similar states.

We use a network measure, transitivity obtained from both joint and intersystem

recurrence matrices to quantify the synchronization transition in the system. Figure

5.5(a) shows the variation of joint transitivity (TJ - blue color) (eq. 2.15) and transitivity

ratio (QT - red color) (eq. 2.16) with ū. TJ increases with ū and reaches its maximum

value during the GS state. Due to the presence of similar states during GS, the individual

transitivities will be similar to that of TJ . Thus the normalized measure, QT reaches a

maximum value around 1 during GS. Hence, QT can be used as an index to detect the

GS state and both the measures, TJ and QT , can be used to detect the synchronization

transition. The smooth increase in these measures from the desynchronized state to PS

is due to presence of the IPS state.

Figure 5.5(b) shows the variation in cross transitivities Tp′q̇′ , Tq̇′p′ with ū. Tp′q̇′ is the

probability that two nodes in the recurrence network of q̇′ are connected given that they

are neighbors to a node in the recurrence network of p′. The interconnections between

p′ and q̇′ are identified using the CRP from p′ → q̇′. As the CRM is not necessar-

ily symmetric, the interconnections can differ based on whether the distance matrix is

computed from p′→ q̇′ or from q̇′ → p′. Due to the differences in the interconnections,

the cross transitivity need not be symmetric and hence can be used as an indicator of

directionality between the signals of coupled oscillators. The differences in the cross

transitivity can be due to the way in which the individual systems are coupled (Feldhoff

et al., 2012). We observe that during the states of desynchronization and IPS, both Tp′q̇′

and Tq̇′p′ have nearly the same value, as the coupling between p′ and q̇′ is weak. During

the PS state, we observe that Tp′q̇′ is higher than Tq̇′p′ , which might happen due to a

stronger influence of q̇′ on p′ than vice versa. We know that there is a mutual coupling
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Figure 5.5: (a) Variation of joint transitivity (TJ ) and transitivity ratio (QT ) of joint
recurrence networks with ū. (b) Variation of cross transitivities (Tp′q̇′ , Tq̇′p′)
of the cross recurrence networks with ū. The networks are constructed using
5000 data points using an embedding dimension of 6, time delay of 2 ms
and a fixed RR of 0.08 for the individual recurrence networks and 0.05 for
the cross recurrence networks. The signal of length 30000 is divided into
windows of length 3000, and the mean values of the properties are plotted.
The error bars represent the standard deviation.

between p′ and q̇′ during the state of thermoacoustic instability. Thus, the difference

between Tp′q̇′ and Tq̇′p′ observed in Fig. 5.5(b) may be due to an asymmetrical bidirec-

tional coupling between p′ and q̇′ with stronger influence of q̇′ on p′ than vice versa.

In most systems which undergo synchronization transition, we don’t see a growth in

amplitude like in our case (Balanov et al., 2008). This results in a speculation that the

dynamics observed in our system can be due to parametric resonance, and need not be

synchronization. However, if the dynamics were a result of resonance, there should

not be any asymmetry in the coupling between p′ and q̇′, which we discovered in our

system. This reaffirms that the transition to thermoacoustic instability is indeed due to

the synchronization between p′ and q̇′.

5.2 Conclusions

We quantified the synchronization transition of the acoustic pressure (p′) and the un-

steady heat release rate (q̇′) fluctuations in a thermoacoustic system using measures de-

rived from multivariate recurrence plots and recurrence networks. Further, we demon-

strated that the measures, determinism (DET ) and correlation of probability of recur-

rence (CPR), can be used to detect the occurrence of the state of phase synchronization

(PS) and the measures, recurrence rate (RR) and joint probability of recurrence (JPR),
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can be used to detect the occurrence of generalized synchronization state (GS). We con-

structed the joint recurrence networks and the cross recurrence networks from the cor-

responding time series and found that the network properties, namely joint transitivity

(TJ ) and transitivity ratio (QT ), are efficient indices to detect GS. Further, in order to

characterize the directionality of coupling between p′ and q̇′, we used cross transitivity.

We discovered a possible asymmetric bidirectional coupling between p′ and q̇′ during

the PS and GS states. We observed that q̇′ exerts greater influence on p′ than vice versa.

This directional dependence will be crucial in designing effective control mechanisms

and modelling the system behavior during thermoacoustic instability. In our system, as

we observed that heat release rate has stronger influence on acoustic pressure, a control

on the flame might possibly be more efficient than a control on the acoustic field in

order to prevent thermoacoustic instability.
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CHAPTER 6

CONCLUSIONS AND SCOPE FOR FUTURE WORK

The main focus of this thesis is to investigate the transitions in a turbulent combustor

using recurrence networks. Firstly, we looked at the transition from combustion noise

to thermoacoustic instability and lean blowout using recurrence network analysis. We

established that the thermoacoustic system at hand is a complex system. Complex net-

works are used to study complex systems to quantify the collective beahivor exhibited

by the system. Since, the time series of the unsteady pressure is a reflection of the

spatio temporal dynamics of the system, we constructed complex networks from the

acoustic time series acquired from a bluff body stabilized turbulent combustor. In or-

der to understand the dynamics, we constructed recurrence networks which is based

on a fundamental property of deterministic dynamical system, recurrence. We chose

an optimum threshold using the behavior of network properties on the threhold. We

reaffirmed that RNs preserve the geometry of the attractor and hence ar capable of cap-

turing the transitions occuring in a turbulent combustor. We also observed the presence

of power law degree distributions during combustion noise and the oscillations prior to

lean blowout which encode information about the presence of singularities in the at-

tractor. We also demonstrated that the network properties such as characteristic path

length and betweenness centrality can capture the transitions much ahead and hence

can be used a early warning measures to forewarn thermoacoustic instability and lean

blowout. All in all, we showed that recurrence networks can be used as a potential tool

to study transitions in a turbulent combustor.

Since, thermoacoustic instability in the system involving turbulent flow is associated

with a synchronization phenomenon of two mutually coupled non-identical oscillators

viz., the acoustic field in the confinement and the turbulent reactive flow present in the

system. Since, we established that recurrence networks are a useful tool to analyze the

transitions, we extend recurrence analysis to bivarate recurrence analysis to analyze the

coupled behavior of the acoustic pressure and unsteady flame dynamics in a turbulent

combustor. We constructed joint and cross recurrence matrices and used quanitifiers



such as joint recurrence rate, determinism and some of the measures from probability

of recurrence plots such as correlation of probability of recurrence and joint probabilty

of recurrence are able to detect the onset of the PS and GS states. Further, we con-

structed joint recurrence and inter-system recurrence networks. We observe that that

the network topologies are similar during GS state and different phase spaces during

the desynchronized state. We quantified the topologies using joint transitivity and a

normalized measure transitivity ratio to detect the onset of GS.

As we are studying the tranistion to thermoacoustic instability as an interaction be-

tween two oscillators, acoustic field and the turbulent reactive flow, it is very important

to identify the directional dependence between them. We used the asymmetry in the

cross recurrence networks and computed cross transitivity to identify the directionality.

We discovered an asymmetric bidirectional coupling between the acoustic field and the

unsteady flame dynamics with the turbulent reactive flow where the turbulent reactive

flow affects the acoutic field more than vice versa.

Scope for Future Work

The present thesis established the recurrence network framework to investigate the com-

plexity or the dynamical features of the thermoacoustic systems by obtaining the com-

plex networks from the time series data using recurrence condition. The directional

dependence is also detected between the acoustic field and the turbulent reactive flow

using temporal analysis. We attempt to model the spatio-temporal dynamics using syn-

chronization between network of oscillators representing the hydrodynamics, combus-

tion and acoustics using the directional dependence discovered. A simple numerical

model will aid in demonstrating that synchonization is a major reason for observing

the complex dynamics and also allows us to perform numerical experiments to disrupt

synchronization.

Further, we studied the interaction between acoustic field and turbulent reactive

flow in a turbulent combustors using bivariate recurrence networks. This framework

is applied to mutual synchronization and can be extended to forced synchonization of

thermoacoustic system as well which will be helpful in developing open loop control

strategies. Analyzing the forcing, acoustic field and the heat release rate using multiplex
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recurrence network can pave way to enable effective forcing strategies by identifying

the mutual directional dependence between these oscillators.
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APPENDIX A

ACOUSTIC FIELD AND UNSTEADY HEAT

RELEASE RATE FLUCTUATIONS IN A

TURBULENT COMBUSTOR ARE SELF-SUSTAINED

OSCILLATORS

In this chapter, we establish acoustic field and unsteady heat release rate fluctuations in

a turbulent combustor as self-sustained oscillators to be able to apply synchronization

framework to thermoacoustic system.

In order to prove that the acoustic field in a duct with turbulent flow is a self-

sustained oscillator, we perform separate experiments on the same experimental setup

(used in the present study) in the cold flow environment by removing the flame and

maintaining the same flow conditions. Figures 6a, b show the time series and the am-

plitude spectrum of the pressure signal acquired for the air flow condition of 9.1 m/s,

respectively. We observe a dominant peak at 733 Hz, compared to the other low mag-

nitude frequency peaks in the spectrum (Fig. 6b). Further, the existence of a dominant

frequency in the spectrum indicates the presence of correlations in the signal, which is

different from the characteristics of noise. This affirms that for turbulent flows confined

in a duct, from the viewpoint of oscillation theory, acoustic pressure is a self-sustained

oscillator with seemingly chaotic fluctuations.

The results presented in this chapter are published in V. Godavarthi, S. A. Pawar, V. R. Unni, R.
I. Sujith, N. Marwan and Jürgen Kurths, Coupled interaction between unsteady flame dynamics and
acoustic field in a turbulent combustor Chaos: An Interdisciplinary Journal of Nonlinear Science, 28,
113111 (2018).



Figure A.1: (a), (b) The time series and the amplitude spectrum of the acoustic pressure
signal acquired during the cold conditions with the air flow velocity of 9.1
m/s, respectively. In the presence of a turbulent flow, the amplitude spec-
trum shows a sharp peak at f1 = 733 Hz, which is an indicative of correlated
self-sustained oscillations in the signal.

Further, various studies have been conducted on open turbulent flames in the past.

Turbulent flows cause oscillations in the flame front, that in turn, cause fluctuations in

the flame surface area, and hence, fluctuations in the heat release rate. Several studies

showed that sound pressure levels (SPL) of combustion noise produced by open turbu-

lent jet flames exhibits a broadband spectrum concentrated at lower frequencies (Shiv-

ashankara et al., 1973; Strahle, 1977; Strahle and Jagoda, 1989; Rajaram and Lieuwen,

2009). Thus, uncoupled turbulent flames with the acoustic field can behave like a self-

sustained oscillator with aperiodic fluctuations.

Thus, under the influence of a turbulent flow, the acoustic field and the heat release

rate in the combustor can be considered as self-sustained aperiodic oscillators. Each of

these oscillators are otherwise damped oscillators; however, the presence of continuous

perturbations from the inherent turbulent hydrodynamic flow makes them self-sustained

oscillators. Thus, synchronization framework can be applied to study the onset of ther-

moacoustic instability in a turbulent combustor.

Further, in the combustor, these oscillators are not distinct but are inherently cou-

pled with each other through the medium of turbulent flow field. Similar behavior can

be seen in complex biological systems such as human respiratory system, where syn-

chronization between cardiovascular and respiratory systems is considered even though

these subsystems cannot be considered as independent(Schäfer et al., 1999). This is

because a weak coupling between these systems is observed and it also has been re-

ported that these systems are generally not phase-locked. Analogously, in a complex
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system such as ours, during combustion noise, the acoustic pressure and unsteady heat

release rate are desynchronized. This desynchronized behavior can be due to the weak

coupling between the turbulent reactive flows and the combustor acoustics. During the

transition to thermoacoustic instability, the coupling between these subsystems gradu-

ally enhances, leading to a generalized synchronization state.
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