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ABSTRACT

KEYWORDS: Combustion instability; thermal-acoustic interaction; acoustic-

hydrodynamic interaction; method of multiple scales; dynamical

system theory; bifurcations; nonlinear instabilities.

Thermo-acoustic instability in combustion chambers has attracted the attention of re-

searchers involved in the design and operation of rocket motors and gas turbine engines.

Thermo-acoustic instability has its origin in confined combustion environment, where

flow processes exchange energy with the heat sources and the acoustic field in the con-

finement. A positive feedback can exist between the heat sources and the acoustic field

that results in the growth of acoustic pressure amplitude.

In this thesis, we attempt to study the origin of combustion instability in low Mach

number reacting flows. Towards this purpose, we need to investigate various cou-

pling mechanisms that establish the interaction between the acoustic and hydrodynamic

fields. To account for multiple time and spatial scales associated with the acoustic and

hydrodynamic fields, we use method of multiple scales (MMS) for the analysis of low

Mach number reacting flows. Through a rigorous mathematicalderivation, the govern-

ing equations - continuity, momentum and energy equations -for low Mach number

reacting flows are decomposed into acoustic perturbation equations for the acoustic and

hydrodynamic field variables. These perturbation equations describe the evolution of

acoustic field variable on two time scales and two spatial scales. Using the perturbation

equations, we can explain the influence of various acoustic sources from the reacting

flow field, on the growth of acoustic pressure amplitude. Therefore, these equations can

be used to compute the characteristics of combustion generated sound.

Further, we use the perturbation equations to explain the feedback mechanism that

exists between the acoustic and hydrodynamic fields. We alsodevelop a convection

reaction diffusion (CRD) system to explain the transition to oscillatory state aided by
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the hydrodynamic sources and the coexistence of oscillatory state and non-oscillatory

state for the acoustic pressure. Solving for our system of equations, we obtain two

stable solutions for the same control parameter - one an oscillatory state, and another a

non-oscillatory state. Therefore, these equations give a better description of hysteresis

observed during acoustic instability. Further, we also explain that the transition from

non-oscillatory state to oscillatory state is a consequence of acoustic-hydrodynamic

interaction.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vii

LIST OF FIGURES xi

ABBREVIATIONS xii

NOTATION xiii

1 INTRODUCTION 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Unsteady reacting flow . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Thermo-acoustic instability . . . . . . . . . . . . . . . . . 3

1.2 Perturbation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Source filtering . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Method of averaging . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Method of multiple scales . . . . . . . . . . . . . . . . . . 16

1.3 Stability of a thermo-acoustic system . . . . . . . . . . . . . . .. . 17

1.3.1 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Objective and overview of thesis . . . . . . . . . . . . . . . . . . . 22

2 Method of multiple scales 24

2.1 Boundary layer theory . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Example problems for demonstrating secular and layer type problems 25

2.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Example problem with MMS - two time scales . . . . . . . . . . . 30

iv



2.3.1 Choosing the time scales . . . . . . . . . . . . . . . . . . . 31

2.3.2 Incorporating the time scales into the analysis . . . . .. . . 32

2.3.3 Ensuring convergence of the solution . . . . . . . . . . . . 33

2.4 Example problems with MMS - two spatial scales . . . . . . . . .. 33

2.5 Aerodynamic sound generation . . . . . . . . . . . . . . . . . . . . 35

3 A theoretical framework to study flow - flame - acoustic interaction 38

3.1 Acoustic - flow interaction viewed as wave - mean flow interaction . 38

3.1.1 Coupling mechanisms . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Nonlinear mechanisms . . . . . . . . . . . . . . . . . . . . 41

3.2 Derivation of nonlinear equations from compressible fluid flow equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Method of multiple scales . . . . . . . . . . . . . . . . . . 42

3.2.3 Incorporating multiple time and space scales . . . . . . .. 44

3.2.4 Obtaining equations at various orders . . . . . . . . . . . . 44

3.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Identifying sources from acoustic perturbation equations 50

4.1 How sources are modeled in theoretical analysis? . . . . . .. . . . 51

4.1.1 Time scales and length scales . . . . . . . . . . . . . . . . 51

4.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Nonlinear convection reaction diffusion equations 60

5.1 Coupling mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Pressure-Temperature coupling . . . . . . . . . . . . . . . 63

5.1.2 Convection reaction diffusion equations . . . . . . . . . .. 63

5.1.3 Transition from non-oscillatory state to oscillatory state . . . 65

5.1.4 Supercritical bifurcation as a limiting case . . . . . . .. . . 71

5.1.5 Propagating flame inside a duct . . . . . . . . . . . . . . . 75

5.1.6 Effect of convection term . . . . . . . . . . . . . . . . . . . 75

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

v



6 Influence of convection on the stability characteristics of thermo-acoustic
system 79

6.1 Stability as a consequence of linear vs nonlinear processes . . . . . 80

6.1.1 Identification of linear and nonlinear processes . . . .. . . 80

6.1.2 The linear and nonlinear processes as represented by the con-
vection reaction diffusion equation . . . . . . . . . . . . . . 82

6.2 Nonlinear instabilities . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Nonlinear convective instability . . . . . . . . . . . . . . . 83

6.2.2 Nonlinear absolute instability . . . . . . . . . . . . . . . . 84

6.3 Nonlinear instability . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.1 Problem description . . . . . . . . . . . . . . . . . . . . . 85

6.3.2 Nonlinear convective instability . . . . . . . . . . . . . . . 89

6.3.3 Nonlinear absolute instability . . . . . . . . . . . . . . . . 90

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Conclusions and future work 93

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Scope of future work . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Application to real combustor configuration . . . . . . . .. 97

7.2.2 Other nonlinear dynamical phenomena . . . . . . . . . . . 98



LIST OF TABLES

vii



LIST OF FIGURES

1.1 Typical length scales in a Rijke tube burner.l5 represent the long wave-
length of acoustic wave.l4 represent the hydrodynamic zone andl1 and
l2 represent sizes of eddies.l3 is the length scale of reaction zone. . 11

1.2 The representation of drivingH(A) and dampingD(A) process, adapted
from Zinn and Lieuwen (2006), in a thermo-acoustic system leading to
limit cycle oscillations. . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 The driving mechanisms leading to thermo-acoustic instability . . . 18

1.4 Subcritical and supercritical bifurcations. The branch A (supercritical
branch) is a stable branch with any perturbation eventuallyconverging
toA as the final state. The branchB (subcritical) is an unstable branch
with perturbations above this branch diverging and the perturbations
below the branch converge to zero amplitude state. . . . . . . . .. 19

1.5 Subcritical bifurcation shown as dashed line followed by a fold point.
After the fold point a stable solution branch (shown as solidline) is
achieved indicating limit cycle amplitudeALC . The bistable zone shows
the coexistence of a stable zero amplitude branch and a stable finite am-
plitude branch. A small perturbation in the unstable regimeresults in
the system approachingALC . However, in the bistable zone a large
perturbation (above the threshold value shown by the dashedline) is
needed for the system to reachALC . In the stable regime perturbation
of any magnitude will eventually die down. . . . . . . . . . . . . . 20

5.1 Illustration of small but finite amplitude local perturbation on the acous-
tic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 1D representation of an open-open tube with flame locatedin the centre. 67

5.3 The initial condition for acoustic pressure perturbation amplitude. X-
axis shows the number of grid points representing the discretized 1D
geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Bifurcation diagram, computed using AUTO, for acousticpressure am-
plitudep2a. Unstable solutions are indicated by dotted lines and stable
solutions are indicated by solid lines. A hysteresis zone exist between
the fold pointF andλ = λh. We have chosenα = -1, θ = 0.6,ϑ = -0.09
andu0 = 1 for the computation of this diagram. . . . . . . . . . . . 69

viii



5.5 We show the influence of the magnitude ofθ andϑ on the location ofλh.
We use the valuesθ = 2 andϑ = -1 for the computation of b1,θ = 0.9
andϑ = -0.2025 for b2 andθ = 0.6 andϑ = -0.09 for curve b3.λh1, λh2
andλh3 are the bifurcation points for curves b1, b2 and b3 respectively.
The curves are obtained by numerical continuation, using AUTO. . . 70

5.6 Bifurcation diagram, computed using AUTO, showing supercrtitical bi-
furcation with dotted line showing unstable solutions and solid lines
showing stable solutions. A bistable zone is created because of the fold
bifurcation atF1. We have used the valuesα = -1, θ = 1,ϑ = -0.01 and
u0 = 1. Forλ > λh, system is unstable. . . . . . . . . . . . . . . . . 71

5.7 Transition from the bifurcation exhibiting hysteresisto a supercritical
bifurcation asϑ, θ are reduced. The change inϑ andθ is in response
to the change inρ. The relations between the mean density and the
weights are described by Eqs. (5.14-5.15). . . . . . . . . . . . . . . 72

5.8 Hysteresis width is reduced asρ → 0. The reduction inρ reduces the
weightθ linearly and the weightϑ quadratically. . . . . . . . . . . . 72

5.9 a) Bifurcation diagram of̂p2a computed using AUTO with the coef-
ficientsα=-1, θ=0 andϑ=-1, b) Bifurcation diagram of̂p2a with the
coefficientsα=-1, θ=1 andϑ=-1. . . . . . . . . . . . . . . . . . . . 73

5.10 Log-log plot showing the variation in the hysteresis width in response to
the variation in density. A linear variation in the log-log plot is obtained
because the hysteresis width is proportional toρ20. . . . . . . . . . . 74

5.11 The exponential growth of the acoustic pressure amplitude p̂2a which
is followed by the nonlinear saturation. a) Regimes of the exponential
growth and the saturation. This curve is computed from the coordinate
transformed CRD system withλ = 0.0072, α = 0.71, θ = 1.42, ϑ =
0.5041 andw = 0.23 (also the curvec1 in b). The comparison of
growth rates for various values of coefficients is shown in b:curvec2
is obtained by usingλ = 0.0168, α = 0.84, θ = 1.68, ϑ = 0.7046 and
w = 0.33 and curvec3 is obtained by usingλ = 0.0157, α = 0.87,
θ = 1.74, ϑ = 0.7569 andw = 0.35. . . . . . . . . . . . . . . . . . 76

5.12 The spatiotemporal evolution ofp̂2a without the influence of convection 77

5.13 In the presence of convection the local perturbations grow both in space
and in time whenu0 = 0.1 . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 The illustration of nonlinear convective instability.The local distur-
bance at a fixed location decays at that point as time advances. The
disturbance is also communicated to other locations. . . . . .. . . 84

6.2 The illustration of nonlinear absolute instbility. Thelocal disturbances
grow at any location in the laboratory reference frame . . . . .. . . 84

ix



6.3 Spatio-temporal evolutions computed from Eqs. (5.9, 5.10). These are
the solutions obtained by solving nonlinear equations. Initial perturba-
tion to p̂2a is of the order10−3, a) p̂2a = 0 is stable (S), b)̂p2a = 0 is
unstable (U), c) Nonlinear convective instability (NLC), d) Nonlinear
absolute instability (NLA).ti denotes the time of initial perturbation
andtf is the time when the final state is reached. . . . . . . . . . . . 87

6.4 Bifurcation diagram (solid circles computed using the method of con-
tinuation) with respect to the linear coefficientλ (control parameter).
The other system parameters are chosen asα = −1, θ = 2, ϑ = −1,
D = 0.01. The parameter space0 < λ < µ1 shows NLC (convective
because the perturbation to the acoustic field in the system eventually
leaves the domain, nonlinear because the growth is governedby the
nonlinear sources. The initial small perturbation of the orderO(10−3)
reaches a finite amplitude before leaving the domain) andµ1 < λ < µ2

shows NLA (absolute because the perturbation to the acoustic field
grows in space and time and never decays).λ > µ2 is a region where
the system is absolutely unstable. Here,µ1 = 0.179 andµ2 = 0.231.
The filled circles show the stable states for thermo-acoustic system de-
scribed by Eqs. (5.9, 5.10). Forλ < 0, stable state iŝp2a = 0. The stable
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Thermo-acoustic instability, widely studied because of its significance in the develop-

ment and operation of gas turbine engines and rocket motors,is believed to be the

consequence of acoustic - heat release rate interaction. The unsteady reacting flow that

prevails in a combustion chamber also contributes to thermo-acoustic instability. The

positive feed back between the heat release rate, the acoustic field and the flow field

results in a self sustained oscillation of acoustic pressure. The oscillation can prove

detrimental to the smooth operation of any combustion system.

The contributing elements of instability, the fluid flow disturbances and resulting

unsteady heat release rate, results in the addition of energy to the acoustic field in the

combustion chamber. Earlier investigations (discussed inSections 1.1.1 and 1.1.2) at-

tempt to study the mechanism of energy transfer between the unsteady heat release

rate and the acoustic field inside the combustor. We realize,from the shortcomings of

these investigations, the need for incorporating simultaneously multiple time and space

scales in developing a theory to explain thermo-acoustic instability. This theory, which

we attempt to develop, describes a general mechanism that explains the energy transfer

between unsteady heat release rate and acoustic field. A criterion to the test the validity

of any theory, that explains thermo-acoustic instability,is to see if the linear and non-

linear processes in the system are considered (Zinn and Lieuwen, 2006). We attempt to

introduce a new nonlinear mechanism, that arise from chemical - acoustic interaction,

as significant in establishing self sustained acoustic oscillation.



1.1.1 Unsteady reacting flow

In a combustion system, the fluid flow governs the convection,diffusion, mixing and

reaction of reactive mixtures. The contribution of fluid flow, in establishing the acoustic

- heat release rate interaction, is thus significant in determining the stability of a thermo-

acoustic system. To be precise, thermo-acoustic instability is a result of the interaction

between the flow, flame and acoustics. In real gas turbine engines, the study of interac-

tion between the flame and fluid flow fluctuations is an active area of research. These

fluctuations can be introduced in a combustion chamber due tothe vortices or coherent

structures present in the flow. The generation, propagationand attenuation of vortices

are an integral part of combustion system. The favorable environment for unsteady

reacting flow includes mixing layers which are formed at the interface of fuel and oxi-

dizer while they mix together before reacting. Another configuration where vortices can

be naturally present is a recirculation bubble formed behind a backward facing step or

flow behind a bluff body. The swirl stabilized combustors also feature unstable acoustic

modes that arise due to the recirculation region (Steinberget al., 2012; Paschereitet al.,

2000). The shear layer instabilities also contribute to unsteady flow dynamics near a

sudden expansion. A common geometry used in the combustion literature is a back-

ward facing step (Ghoniemet al., 2005). Ghoniemet al. (2005) considers a backward

facing step featuring the separated shear layer with a recirculation bubble which is of

importance as far as combustion is considered. The flow field in the combustor governs

the mixing of fuel and oxidizer and thereby the chemical reaction. The recirculation

bubble aids in stabilizing the flame by increasing the residence time of the reactants,

allowing them to react. The flame formed as a result of chemical reaction is thus gov-

erned by the geometry of the combustor. Flow velocity profiles - one that is seen in

the mixing layers, and the one associated with the recirculation bubble in a rearward

facing step - are studied for their potential for instability by Keller et al. (1988). The

underlying mechanisms that lead to these flow instabilitiesare widely studied.

The common instabilities that are present in the shear layerare due to 1) velocity

difference in the shear layer causing Kelvin - Helmholtz instability, and, 2) density

difference caused by the heat release rate from chemical reaction in the mixing layer.

The effect of viscosity in the shear layer usually damps the instability. However, at high

2



Reynolds number, the viscous effects can be neglected and the instabilities are treated

as inviscid instability. In a typical combustion system, a mixing layer is formed at the

point where the fuel and oxidizer jets meet. The fuel and oxidizer are supplied into

the combustion chamber at different velocity. The velocityshear in the mixing layer

can then give rise to the above mentioned instabilities. TheReynolds number over a

wide range starting fromO(102) can cause instabilities in the mixing layer (Lessen,

1948). The density difference in the mixing layer is caused by the temperature rise in

the mixing layer owing to the chemical reaction. An explanation to such a phenomenon

is given by Michalke (Michalke, 1984).

From the above discussion, we know that the flow field oscillation is inherent to all

combustor configurations. Flow filed oscillation is sustained by a mutual interaction

between the flow and the flame. The flow field oscillation leads to unsteady heat re-

lease rate. Unsteady heat release rate is one of the sources of acoustic energy. Thus a

theoretical framework to study thermo-acoustic instability should identify the coupling

mechanism between the flow fluctuations and the flame.

1.1.2 Thermo-acoustic instability

A positive feedback between the unsteady reacting flow and the acoustic field in a com-

bustor often leads to thermo-acoustic instability. This instability, characterized by large

amplitude pressure oscillations, is detrimental to the operation of propulsion systems

including rocket motors and gas turbines used for propulsion and power generation.

The oscillation in pressure result in the fatigue of turbinewalls and eventually lead

to the shutdown of power plants (Zinn and Lieuwen, 2006). Theprevention of such

instabilities is achieved by designing control systems that analyze the growth rate of

instability and identifying the unstable modes in the combustor (Poinsotet al., 1989;

Zinn and Neumeier, 1997; Culick and Palm, 2009).

Originated as an academic problem, with the observation of ‘singing flames’ (Jones,

1945), the interest in the study of thermo-acoustic instability grew with the advent of

huge power generation plants (Günther, 1972). The occurrence of pressure oscillations,

with amplitude of 100 % of the mean pressure in F1 rocket motors emphasize that

3



thermo-acoustic instability is of serious concern in rocket motors (Blomshield, 2001).

Such high amplitudes indicate the possibility that nonlinear mechanisms can be signif-

icant in the growth of instability (Zinn and Lieuwen, 2006).Dump combustor config-

urations, often seen in ramjets, are also prone to combustion instability owing to the

unsteady flow field (Culick and Rogers, 1980). This unsteady flow field arises from

the vortex shedding. Aerodynamic or flow instability at the injectors is also a cause of

combustion instability in jet engines (Konradet al., 1998).

In combustors, the energy available from the unsteady combustion drives large am-

plitude pressure oscillations. As the combustion process responds to the changes in

temperature, pressure and density fields, the fluctuations in these fields determine the

amplitude of acoustic pressure fluctuations (Culick, 2006). Historically, the study of

unsteady pressure oscillations in liquid rocket motors is performed by considering the

contribution from the unsteady processes in subsystems such as injectors and mixing

chambers. These subsystems can have geometries that cause unsteady base flow. Mix-

ing process in a liquid fueled rocket motors is governed by the generation of vortices

which creates an unsteady flow field. Combustion instabilityin rocket motors are sub-

jected to large amplitude pressure fluctuations. Combustion instability in solid propel-

lants are investigated using a response function. Responsefunction (Rp) is a measure

of the extent of modulation in burning rate from the pressurefluctuations.

Rp =
m′/m̄

p′/p̄
(1.1)

Propellant response can also be measured with respect to thevelocity fluctuations. Re-

sponse function tells us how an initial disturbance in the pressure, velocity or temper-

ature fields is related to the conversion of propellant from condensed state to gaseous

state. This conversion may lead to increased reaction rate and in turn an increase in the

heat release rate. The phase between the incoming disturbances and the heat release

rate decides whether the disturbance is destabilizing. Theformulation of a response

function assumes the burning to be confined to an interface. Combustion instability

in solid rocket motors is also influenced by the distributed combustion (Culick, 2006).

Distributed combustion occur away from the propellant burning surface. In such cases,

instead of a thin sheet where the burning is assumed to be concentrated, the combustion
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is completed only inside the chamber away from the surface. Such a combustion has

significant influence in the burning of aluminum and thereby influences the attenuation

of acoustic wave due to particle damping (Becksteadet al., 1984).

The stability of acoustic oscillations are investigated with classical acoustic theory

as a starting point. The main reason for this assumption is the low Mach number flow

that prevails in a combustion chamber (Culick, 2006; Lieuwen et al., 2001). However,

the convective effects are to be considered when nonlinear effects become predominant

(Culick, 1997). In terms of perturbation theory, these nonlinear effects can be studied

only using ‘higher order’ equations. The classical acoustic theory is formulated as

‘lower order’ or first order equations. The theoretical studies deal with expressing the

growth of acoustic oscillationsp′ ∝ eαt as a solution to a linear second order equation,

also called as an ’oscillator’ model. The nonlinear effectscan be incorporated by adding

a nonlinear term as a source to the second order oscillator modeled by Eq. (1.2).

d2η

dt2
+ ω2η = FL + FN (1.2)

whereFL andFN represent the linear and nonlinear sources. Using a second order

model, Balasubramanian and Sujith (2008) have studied the effect of non-normality on

the transient growth of acoustic oscillations. Such a second order ordinary differen-

tial equation modeling the premixed flame - acoustic interaction, with a nonlinear heat

release rate source term, is proposed by Subramanianet al. (2010). Subramanian and

Sujith (2011) have used this model to study the bifurcationsin a Rijke tube resulting

from the acoustic-heat release rate interaction.

The acoustic-heat release rate interaction is theoretically expressed as:

d2η

dt2
+ ω2η = (γ − 1)

∫

∂Q̇′

∂t
ψdV (1.3)

whereψ is the spatial distribution of pressure.Q̇′ is the fluctuation in the heat release

rate. In Eq. (1.3) the acoustic pressure is expressed asp′ = p̄ηψ. The advantage of

using this decomposition is that the spatial harmonic motion can be decoupled from the

acoustic pressure amplitudeη. Therefore, the governing equation can be expressed as

an ordinary differential equation (ODE). The expression for heat release rate depend on
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the type of heat source; i.e. electrically heated mesh or premixed flame. Heckl (1990)

constructed a nonlinear model relating the heat release rate fluctuation with the acoustic

velocity for a horizontal Rijke tube. She proposed that there could be nonlinear effects

when acoustic velocityu′ > ū/3, whereū is the mean flow velocity. In experiments,

the mean flow is established using a blower.

When the heat source is a premixed flame, the wrinkling effects can cause flame

surface area change. The fluctuations in flame surface area lead to heat release rate

fluctuation. The flame front need to be tracked to determine the heat release rate. The

evolution of premixed flame in response to the acoustic field is computed using front

tracking algorithm (Kersteinet al., 1988; Dowling, 1999). Response of the flame front

to acoustic velocity perturbations can then be studied (Boyer and Quinard, 1990). This

response is studied and proposed in the form of a transfer function (TF) which can be

expressed as:

TF =
Q̇′

˙̄Q
/
u′

ū
(1.4)

The linear and nonlinear processes governingQ̇′ andu′ are determined to understand

the onset of instability. Once the instability criterion isdetermined, control algorithms

are developed.

1.1.2.1 Mechanisms of combustion instability

Efficient implementation of control algorithms require theknowledge of the system un-

der consideration. The coupling mechanism between significant processes, such as the

unsteady flow and the acoustic wave propagation, that governthe dynamics of therm-

oacoustic system are studied by Byrne (1983). Studies were conducted in a dump com-

bustor with rearward facing step. The formation and propagation of coherent structures,

a flow feature associated with the dump combustor, is still a major area of investiga-

tion. The flow disturbances introduced by these coherent structures can influence the

heat release rate fluctuations and also couple with the acoustic modes in the combustor

(Schadowet al., 1981). Experimentally, in dump combustors with bluff bodyflame

holders, the unsteady combustor flow field is shown to be a major mechanism causing

instability (Kaskan and Noreen, 1955; Smith and Zukoski, 1985). The energy addition
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to the acoustic field by the unsteady heat release rate, through gas expansion, is dic-

tated by the famous Rayliegh criterion (Rayleigh, 1878). Rayliegh criterion, though

a commonly accepted guideline in the design of control algorithms, is not a sufficient

criterion for the onset of instability. The energy transferinto the system should exceed

the loss of energy from the system. This additional constraint motivates the search for

a general mechanism governing the transfer of energy between the reacting flow field

and the acoustic field.

The study of flow-flame-acoustic interaction deals with the influence of unsteadiness

in the heat release rate on the acoustic wave propagation. Unsteady heat release rate

can arise from the vortex-flame interaction. There can be nonuniform distribution of

heat release rate inside the flame region. Apart from the unsteady flow, equivalence

ratio fluctuations can also contribute to the nonuniform heat release rate. Equivalence

ratio fluctuation can be a consequence of the interaction of acoustic wave with the inlet

fuel flow rate (Lieuwen and Zinn, 1998). The pressure oscillations in the combustion

zone reach the fuel and oxidizer inlets. These pressure oscillations causes the velocity

oscillations. Velocity oscillations causes the fluctuations in the mass flow rates of fuel

and oxidizer, thereby causing equivalence ratio fluctuation.

φ′

φ̄
=
m′

f

m̄f

− m′

o

m̄o

(1.5)

In solid propellant rockets, the fluctuation in the mass flow at the surface of the pro-

pellant (ṁ′) arise from the interaction with the pressure or velocity oscillations. These

mechanisms are called as pressure coupling and velocity coupling respectively. The

acoustic field can be generated because of the vortex shedding from obstacles. Conver-

sion of vorticity mode to the acoustic mode is an active area of theoretical investigation

(Noiray et al., 2009). In liquid propellant rockets, mechanism of instability is asso-

ciated with the droplet evaporation and burning. Contradictory evidence exist in this

field of investigation as to whether droplets add energy to acoustic field or attenuate

the acoustic oscillation. Tong and Sirignano (1986) suggest that droplets evaporation

and burning add energy to the acoustic oscillations. Wooten(1967) shows that droplets

attenuate acoustic oscillations. Experimental and theoretical investigations focus on the

mode of energy transfer between the acoustic field and the reactive flow field.
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1.1.2.2 Experimental

Experiments confirm the interactions between flame, flow and acoustics (Smith and

Zukoski, 1985). An experimental study by Poinsotet al. (1987), in a confined combus-

tion chamber, confirms the role of coherent structures causing the unsteady heat release

rate. This unsteady heat release rate and the acoustic field interact with each other in a

feedback loop. This process may eventually satisfy the Rayleigh criterion resulting the

growth of acoustic pressure amplitude. The significance of fluid mechanical processes

is evident from their experiment. The role of fluid mechanical processes is significant

even in unconfined configurations. The heat release rate fluctuation as a source of in-

stability is emphasized by Langhorne (1988). Duroxet al. (2005) show that the flow

velocity fluctuations result in formation of vortices in thejet shear layer. This, in turn,

modulates the heat release rate. The acoustic pressure fieldcreated by this process may

set up a feed back loop with the combustion processes (i. e. flame and fluid mechanical)

resulting in thermo-acoustic instability.

1.1.2.3 Acoustic sources in the reacting flows

Experiments (Smith and Zukoski, 1985; Poinsotet al., 1987; Duroxet al., 2005) show

that flow field velocity fluctuations have effect on the acoustic pressure. It is also evi-

dent that heat release rate is another factor influencing thestability of a thermo-acoustic

system. The fluctuating heat release rate, arising from the unsteady flow, may further

contribute to hydrodynamic instabilities. The heat release rate will cause a dilatation in

the flow. The dilatation modifies the flow field. The dilatationis a source for the pro-

duction of sound (Balaji and Chakravarthy, 2010). The convection of heat release rate

fluctuations along the length of the flame should also be accounted for while studying

thermo-acoustic instability. Thus, entropy source becomes the third contributing factor

for instability. The entropy mode along with convection mode is found to be a govern-

ing factor in the study of combustion instability. The instability can thus be thought of

as a mixed mode type (Yuet al., 1991).
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1.1.2.4 Theoretical

The theoretical attempts aim at understanding the mechanisms underlying the flow -

flame - acoustic interaction. The pioneering research done by Culick and his co-workers

(Culick, 2006; Yang and Culick, 1986; Culick, 1968) aim at identifying the sources of

acoustic field in reacting flows. These research employ perturbation methods to deter-

mine the acoustic sources (Culick, 1997). The perturbationmethods and its variants

such as averaging methods laid the foundation for theoretical analysis of a thermo-

acoustic system. The ’modes’ as reported by Culick (2006) constitutes the acoustic,

fluid dynamical and entropy sources present in a reacting flow. In the combustion

chamber, these modes undergo fluctuations due to the unsteady nature of combustion -

acoustic interaction. To determine the role of these fluctuations in the stability of the

thermo-acoustic system, they have to be separated from the mean values. This separa-

tion was the motivation behind the use of perturbation methods.

In such an analysis, the computation of the mean flow is separated from the com-

putation of fluctuating variables. This is the shortcoming of such an approach; i.e. the

source terms need to be explicitly modeled to express the relation with the base flow

field. The significant coupling mechanisms, such as the coupling between acoustic field

and ‘DC shift’ that would modify the base flow field are neglected. Later various re-

searchers (Wuet al., 2003; Wu, 2005; Mariappan and Sujith, 2011; Subramanianet al.,

2013) employed perturbation approach to identify the sources that couple the fluctuat-

ing quantities with the mean field variables.

1.1.2.5 Acoustic sources from theoretical analysis

The idea behind the perturbation approaches was to determine higher order equations

which represent the flow - flame - acoustic interactions. Culick (2006) show that at

higher order perturbation equations:

∂ρ′

∂t
+ ρ̄∇.M ′ = S1 (1.6)
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ρ̄
∂M ′

∂t
+∇p′ = S2 (1.7)

∂p′

∂t
+ γp̄∇.M ′ = S3 (1.8)

Equations (1.6, 1.7, 1.8) are evolution equations for fluctuating quantities of density,

momentum and energy respectively. They are derived from thelaw of conservation of

mass, momentum and energy.S1, S2 andS3 constitute entropy, convective and acoustic

sources. These source terms represent 1) the interaction between linear acoustics with

the mean flow, 2) nonlinear acoustics with the mean flow and 3) coupling between fluc-

tuating variables. The mechanism by which the base flow is modified by the fluctuating

field is still absent. Also, the expressions for these sources were absent in the analysis

of Culick and his coworkers (Culick, 2006). However, they are assumed to contain all

relevant processes in a reacting flow field. This type of analysis (i.e. finding the evo-

lution for fluctuations, eg. acoustic field variables, governed by the source terms) can

be extended to specific cases such as laminar premixed flames.Such an approach is

possible when the source terms relevant to those cases are determined.

Wu and coworkers (Wuet al., 2003; Wu, 2005) follow this approach where they

solve the acoustic wave equation with the sources from fluid mechanical processes. Wu

et al. (2003) try to determine the influence of a premixed flame, localized in a duct,

on the acoustic field set up inside the duct. Here, fluctuatingquantities represent the

acoustic field variables. The source terms introduced by thepremixed flame appear

on the right hand side of the acoustic wave equation. The evolution of the flame is

described by a variableF , which gives the location of the flame front. The influence

of localized heat release rate is expressed by a function ofF . The discontinuity in

the acoustic velocity[ua] = q((1 + (∇F )2)1/2 − 1) also modifies the flow velocity as

[U0] = q((1 + (∇F )2)−1/2 − (1 + (∇F )2)1/2). In this manner, the strong heat release

rate can modify both the acoustic and base flow velocities establishing the feedback

loop. In their theoretical analysis, Wu and coworkers (Wuet al., 2003; Wu, 2005)

found that the source relevant to the mean flow - acoustic fieldinteraction is the heat

release rate.
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Figure 1.1: Typical length scales in a Rijke tube burner.l5 represent the long wave-
length of acoustic wave.l4 represent the hydrodynamic zone andl1 andl2
represent sizes of eddies.l3 is the length scale of reaction zone.

Sources for acoustic field are governed by different time scales. The entropy, con-

vective and acoustic modes act at various time scales. Therewere many attempts to

develop perturbation equations for computing the acousticpressure from these sources.

Giauque and Pitsch (2009) performed an acoustic - hydrodynamic splitting to under-

stand how sources from hydrodynamics are responsible for the generation of acoustic

pressure. However, there is only one time scale considered.Two time scales, one

representing acoustics and one representing hydrodynamics are necessary to identify

the different sources. Due to the existence of disparate time scales, the full compress-

ible simulation for computing the acoustic perturbation such as the one performed by

Birbaud and Pitsch (2008) require huge computational resources. LES, URANS and

coupled CFD/CAA approaches require the same amount of resources. An interesting

description of these methods can be found in the book by Schwarz (2009). An acoustic

perturbation equation which will save computational time and at the same time identify

the time scales associated with the flow - flame -acoustic interaction is necessary.

An attempt at incorporating multiple length scales by Mariappan and Sujith (2011)

and Kleinet al.(2001) revealed interesting information about the coupling due to source

terms. Figure 1.1 shows a typical geometry used for theoretical studies. The length

scales considered in their analysis consist of a length scale representing the hydrody-

namic zone and a length scale for incorporating long wavelength acoustic wave. These

length scales are related to each other asl4 = ǫl5, whereǫ is proportional to the Mach

number. Kleinet al.(2001) found that a term, which is the gradient of acoustic pressure,

forces the fluid flow in the hydrodynamic zone. Mariappan and Sujith (2011) success-
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fully applied this theory to explain thermo-acoustic instability in a Rijke tube. They

found a source term∂u′/∂t, known as global acceleration, that causes flow - acoustic

interaction.

The above discussed theoretical studies are limited to multiple length scales and sin-

gle time scale. The thermo-acoustic instability being the consequence of flow - flame -

acoustic interaction, it is worthwhile to investigate whatwe can achieve by incorporat-

ing various time scales associated with these processes in the theoretical anlayses.

1.2 Perturbation Methods

The flow in a combustor is responsible for sound production. The theory of determining

the acoustic sources from the flow was introduced by (Lighthill, 1954) who pioneered

the idea of sound generation from the flow. The theoretical framework involved com-

puting acoustic sources from the flow and using it for the computation of acoustic field

using a wave equation. The equation derived by Lighthill is as follows:

(
∂2

∂t2
− c20

∂2

∂x2i
)ρ =

∂q

∂t
− ∂fi
∂xi

+
∂Tij
∂xi∂xj

(1.9)

whereTij is Lighthill’s stress tensor. For low Mach number flow,Tij ≈ ρ0vivj, wherev

is the velocity associated with the eddy motion andρ0 is the density of the fluid (Crow,

1970). There are various analytical solutions based on thisformulation. The analytical

solutions include an expression describing the role of vorticity on sound generation.

The Lighthill’s stress tensor here expresses vorticity as the contributing source to the

wave equation (Howe, 2002). DifferentiatingTij twice lead to

∂2vivj
∂xi∂xj

= ∇.(ω × v) +∇2(
1

2
v2) (1.10)

whereω = ∇ × v is the vorticity. The term∇.(ω × v) is often called Howe’s source

term. The famous Howe’s analogy is based on the total enthalpy H =
∫

dp/ρ+ 1/2v2,
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in terms of which a wave equation can be formulated as

(
∂2

∂t2
− c20

∂2

∂x2i
)H = ∇.(ω × v) (1.11)

The solution to this wave equation, in the farfield (|x| → ∞), givesρ0H = p− p0. All

the analytical expressions are valid only for the farfield.

The configuration studied by Mariappan and Sujith (2011) is such that the flow field

is confined to a small length scale compared to the long lengthscale representing the

acoustic field. This is the consequence of the low Mach numberflow that prevail in a

combustion chamber. The flow field with the heat source represents an inhomogene-

ity in an otherwise homogenous acoustic field. Following Lighthill’s approach, we can

compute the acoustic sources from the hydrodynamic zone to supply the source term

for the wave equation. This type of problems are called singular perturbation problems.

The Poincare-Lighthill-Kuo (PLK) method is one of those techniques which could solve

the singular perturbation problems. Another approach is toconsider the acoustic field

as the compressible part of the incompressible flow field. Such a viewpoint has an ad-

vantage that acoustics can be taken into account as a perturbation to incompressible

fluid flow. Klainerman and Majda (1982) did a pioneering work in splitting compress-

ible fluid flow into incompressible part and compressible part. Most of the perturbation

methods we use today has its foundation in the work of Klainerman and Majda. Geer

and Pope (1993) and Munzet al. (2007) introduced multiple pressure variable as per-

turbations ofO(ǫ) to find out a solution for acoustic pressure (p = p0 + ǫp1 + ǫ2p2).

The leading order pressure variablep0 represents the thermodynamic pressure and the

higher order pressure variablesp1 andp2 represent the hydrodynamic pressure driving

the incompressible fluid flow and acoustic pressure respectively.

Apart from the use of multiple spatial scales, (Balaji and Chakravarthy, 2010) in-

vestigated the effects of such sources using multiple time/multiple spatial scales. The

leading order equations resemble the incompressible fluid flow equations. The pertur-

bation (or higher order) pressure and velocity variables satisfy acoustic wave equations.

However, their formulation uses the acoustic sources such as dilatation as an averaged

quantity over the short length scale fluctuations. However,the averaging performed
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over short length scale fluctuations makes any information of the fluctuations due to

localized perturbations of the flow unavailable. Also the evolution equations for acous-

tic field variables are on the acoustic time scale. The flow time scale phenomena due

convection and diffusion appear as averaged quantities. These phenomena can have

serious consequences on the stability of the system. For example, the heat release rate

in a non-premixed combustion is governed by the diffusion and convection (Oran and

Gardner, 1985).

An advantage of perturbation method, which we have employedin this thesis, is

to decompose various sources responsible for instability.This can be performed using

source filtering.

1.2.1 Source filtering

Extracting the acoustic sources from the compressible fluidflow equations requires a

physical understanding of what constitutes the acoustic field and what represents the

flow field. As we have discussed before, the identification of thermodynamic pressure,

hydrodynamic pressure and acoustic pressure is a part of this physical understanding.

Theoretically this understanding is obtained from the decomposition of field variables

and to formulate the evolution equations for the decomposedvariables. This decom-

position is made possible by the perturbation method. Each evolution equation thus

obtained represents a physical process (representing the modes) driven by their respec-

tive sources. These equations are called perturbation equations.

An interesting account of this procedure is given in the literature. For example,

Noirayet al. (2009) experimentally identifies a mechanism by which acoustic and con-

vective modes are generated by an orifice plate inside a duct.Durran (2008) used the

filtering methods to filter sound waves from compressible flowto formulate a system of

pseudo-incompressible fluid flow equations. Earlier this method was also used in deter-

mining the compressibility corrections for flows in the solar wind (Zank and Matthaeus,

1991). Once individual processes are identified, the types of sources can be identified

by a method given by Ewert and Schröder (2003), originally designed for the study of

aeroacoustic systems. Their method is outlined here.
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1. Write the governing equations in the formAŨ = G̃. WhereŨ is the Fourier and

Laplace transform of perturbed quantities,Ũ = (ρ̃2, ũ1, p̃2a)
T . The Fourier trans

form is done in space and Laplace transform in time as follows.

f̃(α, β, ω) =
1

(2π)3

∫

∞

0

∫ ∫

∞

−∞

f(x, y, t)e−i(αx+βy−ωt)dxdydt

The operatorA comes from the use of following properties to the spatial - tem

poral operators

ℑ(∂
nf

∂xn
) = (iα)nf̃

ℑ(∂
nf

∂yn
) = (iβ)nf̃

ℑ(∂f
∂t

) = −iωf̃ − 1

2π
f ∗

initial

G̃ consist of source terms.

2. Find the eigenvalues and eigenvectors of the matrix operatorA. These eigenvec

tors correspond to the entropy, convective and acoustic modes.

3. Determine the filtering matrix that would eventually determine the sources con

tributing to acoustic and convective modes.

The perturbation method was originally proposed for phenomena described by a

single time scale. However, the solutions to the equations governing the flow - flame

-acoustic interaction are functions of multiple time scales and multiple spatial scales.

Then the acoustic sources act on different time and space scales. In this context, time

and space scales which describe their interaction are chosen. An earlier attempt using

this approach is by Culick (2006). He applied the method of averaging to formulate a

theory to study the interactions on various time scales.

1.2.2 Method of averaging

The method of averaging, as proposed by Culick (2006), is motivated by the fact that the

amplitude of acoustic pressure evolves on a slow time scale compared to the time scale

of acoustic wave propagation. Therefore, he used a two time scale approach, pioneered

15



by Kevorkian and Cole (1996), to determine the averaged equations. Culick employed

this method to determine the solution for a second order ODE as follows:

η̈N + ω2
NηN = µGN (1.12)

whereGN are the sources.µ is a small parameter. The solution to the above equation

is proposed as a product of a solution varying on the slow timescale and a solution

varying on the fast time scale.

ηN = A(t)sinωN t+B(t)cosωN t (1.13)

WhereA andB are the slowly varying parts and the trigonometric parts varies on the

fast time scale.A andB are the amplitudes which vary because of the source terms.

Sources act on a different time scale compared to that of the amplitude. Finally, the

evolution equations for the slowly varying part is found outas:

dAN

dt
=

µ

ωNτ

∫ t+τ

t

GNcosωN t
′dt′ (1.14)

τ can be assumed to be the time period of the fundamental acoustic mode. The essence

of this method is given by Eq. (1.14), where the sources are averaged over the fast time

scale to determine the the slow evolution of amplitude. The method of averaging is

promising when multiple scales are involved. However, the physical interpretation of

these time scales and space scales are necessary to relate them to the physical variables

such as thermodynamic pressure, hydrodynamic pressure etc.

1.2.3 Method of multiple scales

Describing the physical processes that govern a thermo-acoustic system requires mul-

tiple length scales along with multiple time scales. In thiscontext, method of multiple

scales (MMS) can be used as a generalized method of averaging. MMS is an ideal tool

to incorporate multiple length and time scales into the analysis of thermo-acoustic sys-

tem. Another advantage, which we will explore in this thesis, is that MMS provides a

physical interpretation of the scales included in the analysis. A detailed description of
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MMS will be given in Chapter 2.

1.3 Stability of a thermo-acoustic system

Instability in a thermo-acoustic system is characterized by limit cycle oscillations. Un-

derstanding the mechanisms that lead to the emergence of limit cycle oscillations is the

first step in predicting the instability. Limit cycle oscillations occur when the acoustic

pressure amplitude saturates by a nonlinear mechanism (Zinn and Lieuwen, 2006). As

discussed before, the flow - flame - acoustic interaction depends on the acoustic sources

in the reacting flows. These source can be linear or nonlinear. Further, these sources

can also be classified into driving and damping factors of thermo-acoustic oscillations.

The processes of driving and damping are depicted in Fig. (1.2). The pointALC repre-

sent the condition when driving becomes equal to damping. Tothe left ofALC , driving

is more than damping and the operating condition shift to theright, eventually reach-

ing ALC . To the right ofALC , damping exceeds driving and then operating condition

shifts to left, eventually reachingALC . Thus the pointALC is an equilibrium point. A

theoretical framework to study this phenomena should identify the linear and nonlinear

processes as follows:

H(A) = ǫhA+Hn(A) (1.15)

D(A) = ǫdA+Dn(A)

Figure (1.3) shows the feedback loop which acts as a driving mechanism for thermo-

acoustic instability. The unsteady flow can lead to fluctuating heat release rate. Heat

release modulation can also occur due to the fluctuations dueto acoustic field. The

heat release rate fluctuation, in turn, modifies the flow field.These three factors: 1)

the unsteady flow field, 2) the fluctuating heat release rate and 3) the acoustic field,

drives each other to cause the growth in the acoustic pressure amplitude. The damping

mechanisms involves the mechanisms which causes the loss ofacoustic energy. These

mechanisms arise in a thermo-acoustic system as one that cause transfer of acoustic

energy to other modes such as convective and entropy modes (Menon, 2005a). The
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Figure 1.2: The representation of drivingH(A) and dampingD(A) process, adapted
from Zinn and Lieuwen (2006), in a thermo-acoustic system leading to limit
cycle oscillations.

Figure 1.3: The driving mechanisms leading to thermo-acoustic instability
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base flow may carry the acoustic energy out of the domain causing the acoustic pressure

amplitude to decay to zero. In addition, there can be thermaldissipation that compete

with the driving mechanisms.

1.3.1 Bifurcations

Bifurcation means a qualitative change in the behavior of a dynamical system in re-

sponse to the change in control parameter. For example, Hopfbifurcation leads to limit

cycle oscillations from a non-oscillatory state. Bifurcation is a nonlinear phenomenon.

Bifurcation diagrams which show the response of a thermo-acoustic system to various

system parameters help us to identify the stability criteria for instability. Significant

advance in this direction is achieved due to the work of Burnley and Culick (1996),

Mariappan and Sujith (2011), Ananthkrishnanet al. (2005) and Subramanianet al.

(2013). At present the instability in a thermo-acoustic system is found to be arising

from two types of bifurcations-supercritical and subcritical bifurcations.

Control paramter 

AB

Figure 1.4: Subcritical and supercritical bifurcations. The branchA (supercritical
branch) is a stable branch with any perturbation eventuallyconverging to
A as the final state. The branchB (subcritical) is an unstable branch with
perturbations above this branch diverging and the perturbations below the
branch converge to zero amplitude state.

Among the bifurcations, supercritical bifurcation is realized numerically for the in-

stability in a Rijke tube (Mariappan and Sujith, 2011). The existence of subcritical

bifurcation as shown in Fig. (1.4) is not realizable as thereis no finite amplitude stable

branch in such a bifurcation. In such bifurcation, the saturation to a finite amplitude

limit cycle amplitude is possible through a fold point. Thisphenomena is theoretically
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studied by Subramanianet al. (2013) in the context of a horizontal Rijke tube. Other

oscillatory branches indicating quasiperiodicity and chaotic oscillations are found in

experiments (Kabiraj and Sujith, 2012). An efficient numerical scheme, using matrix-

free continuation, which computes these branches is proposed by (Waughet al., 2014).

Researchers, studying the supercritical and subcritical bifurcations in thermo-acoustic

system (Subramanianet al., 2013; Clavinet al., 1994), attempt to represent the bifurca-

tions using a simple mathematical equation known as normal form.

Bistable zoneStable Unstable

Fold

point

Figure 1.5: Subcritical bifurcation shown as dashed line followed by a fold point. After
the fold point a stable solution branch (shown as solid line)is achieved indi-
cating limit cycle amplitudeALC . The bistable zone shows the coexistence
of a stable zero amplitude branch and a stable finite amplitude branch. A
small perturbation in the unstable regime results in the system approaching
ALC . However, in the bistable zone a large perturbation (above the thresh-
old value shown by the dashed line) is needed for the system toreachALC .
In the stable regime perturbation of any magnitude will eventually die down.

1.3.1.1 Normal form of bifurcations

Equations (1.16) and (1.17) represent the normal form of supercritical and subcritical

bifurcations respectively. The control parameterλ is expressed as the coefficient of

linear term. Variation in the control parameter will resultin the bifurcations shown in

Fig. (1.4).

ẋ = λx− x3 (1.16)
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ẋ = λx+ x3 (1.17)

Equations (1.16, 1.17) also show that the bifurcations are nonlinear in nature. The

saturation of the linear growth (ẋ = λx) is caused by the cubic nonlinear term. In

experiments, bifurcation is accompanied by the hysteresis(Kabiraj and Sujith, 2012).

The hysteresis is caused by the existence of a bistable regime in the control parameter

space. Origin of this phenomenon is also due to the competition between driving and

damping mechanisms in a thermo-acoustic system.

1.3.1.2 Bistability

Figure (1.5) shows the coexistence of a limit cycle solutionin a control parameter space

along with the stable zero amplitude solution. This stability characteristic of thermo-

acoustic system is called bistability. While operating in abistable zone, the system

can approach a finite amplitude branch from zero amplitude branch for a sufficiently

large perturbation. This phenomenon is known as ‘triggering’ (Wicker et al., 1996).

The system can also approach the finite amplitude branch for any small perturbation

when the control parameter exceeds a critical value (λc). While the system is in the

state of limit cycle oscillation, even by changing the control parameter belowλc will

not cause the decay of limit cycle amplitude. This phenomenon is known as hysteresis

of a thermo-acoustic system.

As discussed earlier, when the driving exceeds damping, theoscillation will start to

grow in amplitude until the finite amplitudeALC is achieved. This happens when the

value of control parameter exceedsλc. Therefore, determining the control parameter

for a system helps us to identify the growth mechanism in thatsystem. Also in the

bistable zone, a large perturbation can overcome the damping in the system resulting in

ALC . An understanding of driving and damping sources is inevitable in the control of a

thermo-acoustic system (Culick, 2006; Zinn and Lieuwen, 2006).

We believe that, determining a mechanism that causes the transition from the zero

to finite amplitude branch is an outstanding issue in the study of stability. In the next

section, we will describe the theoretical approach that we have adopted in developing a
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theory to study the stability in thermo-acoustic systems.

1.4 Objective and overview of thesis

This thesis primarily aims at developing a theoretical framework for the study of flow -

flame - acoustic interaction that leads to thermo-acoustic instability. Towards this pur-

pose, we have employed method of multiple scales (MMS) to incorporate various time

scales and length scales involved in a thermo-acoustic system. The governing equations

for compressible reacting flows are decomposed into perturbation equations governing

the individual (flow, flame and acoustic) physical processes. We show the dependence

of these processes on the time scales and length scales chosen. Eventually, through a

rigorous mathematical derivation from compressible fluid flow equation, we have de-

veloped a new theory to study the stability of a thermo-acoustic system. This theory

formulated in the form of a set of convection - reaction - diffusion (CRD) equations

explains the stability characteristics such as limit cycleoscillations and bistability of a

thermo-acoustic system.

In Chapter 2, a detailed description and demonstration of the MMS is given. The

methods discussed in Chapter 2 is the basis of the formulation of the theoretical frame-

work. The detailed derivation of CRD equations, in the low Mach number limit, is given

in Chapter 3. These equations are introduced for the first time in thermo-acoustics. Pre-

viously, reaction - diffusion equations were used to study in combustion research to

track passive scalars such as temperature (Schvab - Zeldovich equation). However, the

CRD equations developed in this thesis describe the evolution of acoustic pressure and

thermal fluctuation. The advantage of CRD equations is that they have inherent sta-

bility characteristics such as bistability. The fact that these equations are derived from

the governing equations for reacting flow makes it evident that the thermal - acoustic

interaction and resultant instability are inherent to the reacting flows.

We have shown in this thesis how the physical processes such as unsteady fluid flow,

heat release rate, DC shift compete with each other to drive and damp the instability.

The study of this competing behavior, as we have discussed inthe Section (1.3), starts

with the identification of linear and nonlinear processes. As we have discussed in Sec-

22



tion (1.3.1.1), the bifurcation is a consequence of a linearand a nonlinear mechanism.

The CRD equations model this mechanism. The CRD equations show the relation

between the convection, heat release rate and thermal dissipation. In Chapter 4, the

presence of various sources and their respective time scales are discussed. In Chapter

5, we show that the nonlinearity inherent to all low Mach number reacting flows arise

from the chemical - acoustic interaction. The linear growthof acoustic pressure am-

plitude is shown to be the result of heat release rate, DC shift and thermal dissipation.

In Chapter 6, we show that during the thermal-acoustic interaction, acoustic pressure

amplitude grows in time due to the interaction between the acoustic and hydrodynamic

fields, leading to high amplitude sustained oscillations. This transfer of energy is shown

to be the cause of bistability in a thermo-acoustic system. Finally, in Chapter 7 we dis-

cuss the conclusions from the present work and the possible application of the present

theory to other interesting phenomena in thermo-acoustic systems
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CHAPTER 2

Method of multiple scales

The method of multiple scales (MMS) is a perturbation method. In the past, perturba-

tion methods aided many advancements in fluid dynamics. For example, in boundary

layer theory, the thin layer where viscous forces are dominant introduces a length scale

that is small compared with the length scale of the domain where the inviscid flow

prevails (Kevorkian and Cole, 1996). Determining a uniformly valid solution for the

boundary layer and the domain of inviscid flow motivated the use of perturbation meth-

ods in boundary layer theory.

2.1 Boundary layer theory

If Navier Stokes equations governing the fluid flow is writtenas,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
= ǫ(uxx + uyy) (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
= ǫ(vxx + vyy)

∂u

∂x
+
∂v

∂y
= 0

then the inviscid fluid flow is governed by Euler equations.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
= 0 (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂p

∂y
= 0

∂u

∂x
+
∂v

∂y
= 0

The equations governing the fluid flow inside the boundary layer are formulated by

scalingu = U(X, Y, T ), v = ηV (X, Y, T ), p = P (X, Y, T ), X = x, Y = y/δ and



T = t. VariablesU , V , P ,X, Y andT are used to describe the flow inside the boundary

layer. Upon these scaling, we obtain the Navier Stokes equations as follows

∂U

∂T
+ U

∂U

∂X
+
η

δ
V
∂U

∂Y
+
∂P

∂X
= ǫUXX +

ǫ

δ2
UY Y (2.3)

∂V

∂T
+ U

∂V

∂X
+
η2

δ
V
∂V

∂Y
+

1

η

∂P

∂Y
= ǫηVXX +

ǫη

δ2
VY Y (2.4)

∂U

∂X
+
η

δ

∂V

∂Y
= 0 (2.5)

The inner solution (solution inside the boundary layer) requires the dependent variables

inside the boundary layer to match the inviscid solution (outer solution). The transverse

gradient terms decide the variation of dependent variablesinside the boundary layer. If

we writeη = δ andδ =
√
ǫ, then the transverse gradient terms in Eq. (2.3) (η

δ
V ∂U

∂Y
and

ǫ
δ2
UY Y ) and in Eq. (2.4) (η

2

δ
V ∂V

∂Y
and ǫη

δ2
VY Y ) will be of the same order. Upon using this

scaling (η = δ andδ =
√
ǫ), we obtain at leading order (ǫ0):

∂U

∂T
+ U

∂U

∂X
+ V

∂U

∂Y
+
∂P

∂X
= UY Y (2.6)

∂P

∂Y
= 0

∂U

∂X
+
∂V

∂Y
= 0

Equations (2.2) and (2.6) (Note that both these equations contains the leading order

terms) give the outer and inner solution respectively. There exists a region of overlap

where the inner and outer solutions match. For the flow over a flat plate (y = 0 rep-

resenting the solid boundary), asY → ∞ the inner solutionU(X, Y, T ) should match

u(x, y, t) asy → 0.

2.2 Example problems for demonstrating secular and

layer type problems

A review of model problems representing fluid flow phenomena is given by Lagerstrom

and Casten (1972). These type of problems which involves disparate length scales are

known as ‘layer type’ problems. There is another kind of problem where the disparity
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is in the time scales. Such a problem is called ‘secular type’problems. Solutions to

secular type and layer type problems are carried out in threesteps; 1) Determine the

domains of interest, 2) construct solutions valid to each domain and 3) match these

solutions at the region of overlap of domains. An example of asecular type problem is

given below.

m
d2yd
dt2d

+ 2β
dyd
dtd

+ kyd = 0 (2.7)

Equation (2.7) is the governing equation for a spring - mass system. The nondimension-

alization is carried out by choosingy = yd/L for the dependent variable (amplitude).L

is the reference amplitude. There are two time scales. One isobtained asT1 =
√

m/k

and the otherT2 = β/k. Therefore, time can be nondimensionalized with respect to

any of these time scales. For example, when nondimensionalt = td/T1

d2y

dt2
+ 2ǫ

dy

dt
+ y = 0 (2.8)

whereǫ = β/
√
mk = T2/T1. For small damping,β <<

√
mk. An approximate

solution can be found for the following equation.

d2y0
dt2

+ y0 = 0 (2.9)

with initial conditiony(0) = 0 and|dy0/dt|t=0 = 0. Solution to Eq. (2.9) can then be

written as

y0 = sint (2.10)

where,y0 is the leading order approximation to the full solutiony. The full solution can

be written as

y ∼
∞
∑

k=0

ǫkyk(t) (2.11)

On the substitution of the solution (2.11) to the governing Eq. (2.8), we obtained fory1

d2y1
dt2

+ y1 = −2cost (2.12)

with y1(0) = 0 and|dy1/dt|t=0 = 0. The solution fory1 can then be expressed as

y1 = −tsint (2.13)
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The next step is to see how good is the approximate solution (2.11). The error in ap-

proximation can be expressed as

y − (y0 + ǫy1) = O(ǫ2) (2.14)

Towards this purpose, we look for the validity of the solution in a time interval[0 τ ].

When the timeτ is ofO(1) the convergence criterion given by (2.14) is satisfied. How-

ever, if τ is of O(1/ǫ) the solution ofy1 diverges and the convergence criterion is vi-

olated. Then, we do not have a good approximation for the solution y. To ensure the

convergence of the solution expansion, we should thereforeeliminate the secular terms.

The layer type problems will violate the convergence criterion due to ‘singularity

condition’. This is explained in the following example. When the mass is smaller than

the damping (mk << β2) the spring - mass equation can be represented as

η
d2y

ds2
+ 2

dy

ds
+ y = 0 (2.15)

with initial conditionsy(0) = A and|dy/ds|s=0 = B, wheres = tdk/β. η = km/β2 =

1/ǫ2 = T 2
1 /T

2
2 is the small parameter. A solution expansion of the form

y ∼
∞
∑

k=0

ηkyk (2.16)

can be constructed in terms ofη. The leading order equation is obtained as

2
dy0
ds

+ y0 = 0 (2.17)

A solution to the leading order equation is of the form

y0 = Ae−s/2 (2.18)

However, in the spatial interval[0 s], whens = 0, the velocitydy/ds gives the wrong

value; i.e. the initial condition is violated. Therefore, asingularity exists ats = 0.

However, the exact solution to Eq. (2.15) (Lagerstrom and Casten, 1972) shows that
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when a correction ofO(η) (see Eq. (2.19)) is added to the leading order term

y ≈ Ae−s/2 − 1

4
(A+ 2B)e−2s/ηη (2.19)

the velocity boundary condition is satisfied ats = 0. Here, the factors/η is another

time scaletd/T3, whereT3 = m/β.

In the above discussion, we see that to determine a uniformlyvalid solution; i.e.

solution valid nears = 0 (the singular region) and everywhere else, we need at least two

time scales (in secular type problems) and two length scales(in layer type problems).

In layer type problems each domain is analyzed separately with its own length scale.

However, in secular type problems both time scales are used simultaneously. In the next

section we will discuss the procedure underlying the solution of secular and layer type

problems.

2.2.1 Method

The method of multiple scales requires an initial solution expansion. Often, this solution

expansion is known as asymptotic expansion. Construction of the asymptotic expansion

follows certain conditions. These conditions are elaborated in the books by Kevorkian

and Cole (1996), Nayfeh (2008) and in a review by Lagerstrom and Casten (1972). A

brief outline of these conditions are given in the followingsection.

2.2.1.1 Asymptotic expansion

Asymptotic expansion is an approximate solution constructed to satisfy the governing

equations of a physical problem. This procedure is requiredwhen the problem is layer

type or secular type, as an exact solution is unavailable. Anasymptotic expansion is

expressed as follows;

y =
n

∑

i=0

φi(ǫ)yi (2.20)

wherey is an approximation to the actual solution. Each term in the approximation

(φ1y1, φ2y2..) should be smaller than the preceding term. This is ensured by choosing
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suitable asymptotic sequence (φ1, φ2..). The behavior of a asymptotic sequenceφ(ǫ)

and the asymptotic expansiony; i.e. the convergence and divergence, as the limit ap-

proaches (ǫ → 0) is expressed using Landau symbols (BigO and smallo). Landau

symbols indicate the relative order of magnitude of each term in the expansion. In the

next section, using simple examples we will explain the use of Landau symbols.

2.2.1.2 Landau symbols

For a domainD (a physical domain where we try to find the solution in terms ofinde-

pendent variablex) and in the intervalI : 0 < ǫ < ǫ1,

y(x; ǫ) = O(v(x; ǫ)) (2.21)

implies that

y(x; ǫ) ≤ K(x)(v(x; ǫ)) (2.22)

wherev is a gauge function. Gauge functions are used to measure the growth rate of

asymptotic sequence (Nayfeh, 2008). BigO implies that|y/v| is bounded byK(x). If

the condition (2.22) is true, then the solution given byy is uniformly valid in the domain

D throughout the intervalI. As an example,

x+ ǫ = O(1) (2.23)

is uniformly valid in the domainD : 0 < x < 1 in the intervalI : 0 < ǫ < ǫ1 < 1.

However, the expression
1

x+ ǫ
= O(1) (2.24)

is not uniformly valid as we cannot determine a finite constant (note that here the con-

stant does not vary asx; i.e. constant is 1) which satisfy the above expression when

x→ 0.

The other Landau constant states that

y(x; ǫ) = o(v(x; ǫ)) (2.25)
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which implies that for any domainD and intervalI : 0 < ǫ < ǫ1 we have

y(x; ǫ) = δo(v(x; ǫ)) (2.26)

Expression (2.26) implies thaty << v asǫ→ 0 or in other wordsy is bounded. Hence

the expression (2.26) implies (2.22). An asymptotic expansion can be constructed if we

choose suitable asymptotic sequenceφi(ǫ) such that

φi+1 = o(φi) (2.27)

Such an asymptotic sequence will result in an asymptotic expansion:

y =
m=n−1
∑

m=0

φm(ǫ)ym +O[φn(ǫ)] (2.28)

An example for such an asymptotic sequence isφi(ǫ) = ǫi−1, wherei = 1, 2, 3, ,.

2.3 Example problem with MMS - two time scales

As the first example we will discuss a problem with two time scales governed by an

ODE. The physical problem described here is that of an oscillator with small damping.

The contribution of the small damping term is negligible to the oscillatory process.

However, over long time, these negligible contributions have a cumulative effect on

the physical system. These problems are often encountered in nature. The motion of

satellite around the earth is influenced by the thin atmosphere, gravity of the moon etc.

over a long time. Similarly, the small damping can lead to thedecay in the amplitude

of oscillations. This ‘invisible’ time scale over which slow changes occur to the system

has to incorporated in the analysis. A description of such problems can be found in

the book by Kevorkian and Cole (1996). The following exampleis adapted from the

book on perturbation methods by Nayfeh (2008). A linear damped oscillator can be

represented as

ẍ+ x = −2ǫẋ (2.29)
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An asymptotic expansion is chosen with an asymptotic sequence in terms ofǫ.

x = x0 + ǫx1 + ǫ2x2 + .. (2.30)

The asymptotic expansion is substituted into Eq. (2.29) to obtain at various orders ofǫ

O(ǫ0) → ẍ0 + x0 = 0 (2.31)

O(ǫ1) → ẍ1 + x1 = −2ẋ0 (2.32)

O(ǫ2) → ẍ2 + x2 = −2ẋ1 (2.33)

Substituting solution to Eq. (2.31), which isx0 = cos(t + φ), in Eq. (2.32) we obtain

the solution tox1 asx1 = −at cos(t + φ). Similarly, solution tox2 is obtained as

x2 = (1/2)at2cos(t + φ) + (1/2)at sin(t + φ). A close look at these solution shows

that whent = O(ǫ−1), x1 andx2 becomes secular terms; i.e.x1, x2 → ∞ ast → ∞.

The higher order variablesx1 andx2 should be smaller than the leading order term for

a converged solution. An exact solution to Eq. (2.29) is

x = ae−ǫtcos[
√
1− ǫ2t + φ] (2.34)

In the above expression there are two time scales involved. Similar to the example in

Section 2.1, where we used multiple space scales to remove the singularity, we may

need an additional time scale to remove the secular terms. The next step is to choose

suitable time scales for this purpose.

2.3.1 Choosing the time scales

Upon Taylor series expansion, we obtain

e−ǫt = 1− ǫt+
1

2
ǫ2t2 + .. (2.35)

and

cos[
√
1− ǫ2t + φ] = cos(t− 1

2
ǫ2t+ φ)

1

8
ǫ4tsin(t− 1

2
ǫ2t+ φ) + .. (2.36)
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In the expansion (2.35), the terms ofO(ǫ) andO(ǫ2) are secular terms whent is of

O(1/ǫ). The error in approximation will only grow as we add more terms to the Taylor

series expansion. The variablesǫ and t are grouped together and a new time scale

T1 = ǫt is introduced to keep the error within the limit. Similarly,for the expansion

in (2.36) to converge, time scalesT2 = ǫ2t = O(1) andT4 = ǫ4t = O(1) are to be

introduced.

2.3.2 Incorporating the time scales into the analysis

The time scales are incorporated into the analysis as follows.

d

dt
=

M
∑

n=0

δn(ǫ)
∂

∂Tn
(2.37)

Substituting the asymptotic expansion and time scale expansion into Eq. (2.29), we

obtain at various orders ofǫ:

∂2x0
∂T 2

0

+ x0 = 0 (2.38)

∂2x1
∂T 2

1

+ x1 = −2
∂x0
∂x0

− 2
∂2x0
∂T0T1

(2.39)

∂2x2
∂T 2

2

+ x2 = −2
∂x1
∂x1

− 2
∂2x1
∂T0T1

− ∂2x0
∂T 2

1

− 2
∂2x0
∂T0T2

− 2
∂x0
∂T1

(2.40)

The leading order solution is obtained as

x0 = A0(T1, T2)e
iT0 + A0(T1, T2)e

−iT0 (2.41)

Substituting this solution into the second order equation,we obtain

x1 = A1(T1, T2)e
iT0+A1(T1, T2)e

−iT0−(A0+
∂A0

∂T1
)T0e

iT0−(A0+
∂A0

∂T1
)T0e

−iT0 (2.42)

T0 isO(1) as long ast isO(1). However, whent isO(ǫ−1), the above solution contains

secular terms (the third and fourth terms), implying that the solution is not uniformly

valid for all t. In the next section, we will demonstrate the how to ensure a uniform

valid solution, thereby also ensuring the convergence of the asymptotic expansion.
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2.3.3 Ensuring convergence of the solution

To remove the secular condition, we impose the following.

A0 +
∂A0

∂T1
= 0 (2.43)

ThenA0 = a0e
−iT1 andx1 = A1(T1, T2)e

iT0 + A1(T1, T2)e
−iT0 . Similar condition are

revealed while solving forx2. Finally a solution which is guaranteed to converge is

obtained (see (Nayfeh, 2008) for detailed derivation).

x = ae−ǫtcos(t− 1

2
ǫ2t + φ) (2.44)

In the next section, we will discuss problem with multiple spatial scales. The purpose

of the next section is to demonstrate, using a simple example, the role of spatial inho-

mogeneity. The spatial inhomogeneity can arise naturally in the boundary layers and

the need for incorporating the spatial scales to resolve this inhomogeneity is already

discussed in the beginning of this chapter. In the next section, we introduce ‘fast’ and

‘slow’ variation of spatial variable describing the variation of physical quantities such

as velocity and pressure, when there is a spatial inhomogeneity.

2.4 Example problems with MMS - two spatial scales

The following example is adapted from the book by Kevorkian and Cole (1996). We

show in this example how the variation in the fast scale is averaged to provide an asymp-

totic approximation to the original equation. Such an equation is called a homogenized

equation (Kevorkian and Bosley, 1998). An application for homogenization, used in

the context of combustion instability can be found in a monograph by Culick (2006).

Culick derived equations for acoustic field variables on a slower time scale. However,

here we illustrate the method of homogenization using a simple and easy to follow

example of heat conduction. Homogenized equation governing one dimensional heat
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conduction, on a slower space scale, can be derived from the equation:

dqx
dx

= 0 =
∂

dx
(k(x,

x

ǫ
)
dT

dx
) (2.45)

The variablex describes the space scale for slow variation andx∗ = x/ǫ is the space

scale for describing the fast variation in the region of inhomogeneity. The boundary

conditions areT (0) = TL andT (1) = 0. An asymptotic expansion forT can be

formulated as

T (x; ǫ) = T0(x, x
∗) + ǫT1(x, x

∗) + ǫ2T2(x, x
∗) + ... (2.46)

The spatial operator can be expressed as

d

dx
=

1

ǫ

∂

∂x∗
+

∂

∂x
(2.47)

Substituting (2.47), (2.46) into Eq. (2.45) gives at various orders

∂

∂x∗
(k(x, x∗)

∂T0
∂x∗

) = 0 (2.48)

∂

∂x∗
(k(x, x∗)

∂T1
∂x∗

) = − ∂

∂x∗
(k(x, x∗)

∂T0
∂x

)− (2.49)

∂

∂x
(k(x, x∗)

∂T0
∂x∗

)

∂

∂x∗
(k(x, x∗)

∂T2
∂x∗

) = − ∂

∂x∗
(k(x, x∗)

∂T1
∂x

)− (2.50)

∂

∂x
(k(x, x∗)

∂T1
∂x∗

)− ∂

∂x
(k(x, x∗)

∂T0
∂x

)

From Eq. (2.48), we obtain
∂T0
∂x∗

=
B0(x)

k(x, x∗)
(2.51)

Now, sincex∗ is rapidly varying with respect tox, we need to imposeB0 = 0. Other-

wise, due to the linear growth ofT0, the asymptotic expansion will not converge (see the

discussion in Section (2.2.1.1)). ThenT0 = θ0(x), whereθ0 is the integration constant.

Eq. (2.50) is substituted with the above expression to obtain

k(x, x∗)
∂T1
∂x∗

= −k(x, x∗)∂θ0
∂x

+B1(x) (2.52)
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On integration,

T1(x, x
∗) = −x∗∂θ0

∂x
+B1(x)

∫ x∗

0

dξ

k(x, ξ)
+ θ1(x) (2.53)

To avoid the linear growth ofT1 in x∗ we impose:

B1(x) =
1

< k−1(x) >

dθ0
dx

(2.54)

where

< k−1(x) >= limx∗→∞

1

x∗

∫ x∗

0

dξ

k(x, ξ)
(2.55)

Similarly, for Eq. (2.51), we have the condition

d

dx
(

1

< k−1(x) >

dθ0
dx

) = 0 (2.56)

where1/ < k−1(x) > is the effective thermal conductivity. The resultant equation is a

homogenized equation and provides a good approximation to the exact solution.

qx = −keff (x)
dθ0
dx

(2.57)

The main idea demonstrated by the examples is that to ensure agood approximation

to the exact solution, the linear growth in the fast scale is to be avoided. The conditions

prescribed to ensure a good approximation are called solvability conditions. The meth-

ods described in the preceding sections form the basis of techniques used in the field of

aerodynamics sound generation (Crow, 1970; Lighthill, 1954; Geer and Pope, 1993),

which we will discuss in the next section.

2.5 Aerodynamic sound generation

Crow (1970), for a very small Mach number (M << 1), provides a theoretical frame-

work to study the aerodynamic sound generation from eddies.He regards such a prob-

lem as a singular perturbation problem. The motivation behind using singular perturba-

tion method in the study of aerodynamically generated soundis the presence of multiple
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length scales. The length scale representing the eddies (l) and the length scale for acous-

tic wave (λ) form a ratiol/λ << 1. The existence of localized eddy embedded in an

acoustic field motivates one to decompose the velocity field into a rotational field and

an acoustic field.

u = ∇× v +∇φ (2.58)

The source termTij in the Lighthill’s equation (1.9) can then be expressed as anasymp-

totic expansion

Tij = T 0
ij +M2T 1

ij + .. (2.59)

The leading orderTij decays rapidly outside the eddy zone. However, the higher orders

are made to consist of both rotational and acoustic components. The uniformly valid

solution is obtained by matching the solution inside the eddy with the solution for acous-

tic field that exist outside the eddy zone. An adaptation of this method is also used in

thermo-acoustics when multiple length scales are encountered (Mariappan and Sujith,

2011). A similar application of Crow’s approach is used by Geer and Pope (1993) while

studying the sound from vibrating bodies. They used multiple length scalesx0 = x and

xi =M ix, wherei = 1, 2, ... The variable are expanded as

ρ =

∞
∑

j=0

ρjM j (2.60)

and

u =

∞
∑

j=0

ujM j (2.61)

and the spatial derivative is expressed as

∇ = ∇0 +M∇1 +M2∇2 + .. (2.62)

Geer and Pope (1993) applied the technique of singular perturbation theory to determine

higher order perturbation equations governing the sound production and propagation.

They found out, in addition to the linear wave equations, higher order nonlinear equa-

tions that predict the nonlinear features such as wave steepening.

The method of multiple scales as described in this chapter, although useful in treat-
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ing the singular and secular type problems, is “problem dependent“. The discussion

in this chapter serves as a guideline in dealing with different physical problems. The

asymptotic expansion, the procedure for ensuring the convergence and the choice of

small parameter depends on the physical nature of the problem. The asymptotic se-

quence have to be carefully chosen if the higher order equations are to be meaningful.

In the context of thermo-acoustics, the method employed in the field of aerodynamically

generated sound is worth exploring. However, the method hasto be extensively mod-

ified to incorporate multiple time and space scales simultaneously. We will introduce

such a methodology in Chapter 3.
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CHAPTER 3

A theoretical framework to study flow - flame - acoustic

interaction

3.1 Acoustic - flow interaction viewed as wave - mean

flow interaction

The development of a theoretical framework to study flow - flame - acoustic interac-

tion that leads to thermo-acoustic instability, involves choosing physically meaningful

length scales and time scales. These scales include the timescales associated with

physical processes such as convection, acoustic wave propagation and the length scales

describing the flow, acoustic wave and the flame. These time scales and length scales

are disparate and often arise from the inhomogeneity associated with the physical prob-

lem. Such an inhomogeneity, for a low Mach number flow, is the weak compressibility

due to an acoustic field imposed over the incompressible fluidflow. Such a flow fits

the description of a ‘nearly incompressible flow’ (Zank and Matthaeus, 1990). Similar

phenomenon that occur in magnetohydrodynamic (MHD) flows was studied by Zank

and Matthaeus (1990). They found the influence of weak compressibility on modifying

the fluid flow using the method of multiple scales (MMS).

Apart from MHD flows, in atmospheric flows, where density varies with altitude,

also feature such inhomogeneity (Bühler, 2009). In the context of atmospheric flows,

Bühler (2009) formulated a theory to describe wave - mean flowinteraction. In his

theory, compressibility is represented as a ‘wave’ on the incompressible ‘mean flow’.

Such a system is similar to the nearly incompressible fluid flow. Buhler has successfully

employed perturbation method, with the inclusion of multiple scales, to formulate his

theory. As an extension to the theory by Zank and Matthaeus (1990), Hunanaet al.

(2006) attempted including large scale density inhomogeneity. This density variation



introduces volume expansion in the fluid flow. Therefore, with the large scale density

variation, the nearly incompressible flows resemble reacting low Mach number flows.

Classifying the reacting low Mach number flow as a nearly incompressible flow or

MHD flow has advantages. Now, we only have to find the mechanisms responsible

for the wave - mean flow interaction in a reacting low Mach number flow. The ex-

isting tools, originally introduced by (Zank and Matthaeus, 1990), can be modified to

study these mechanisms. The mutual coupling between the magnetohydrodynamic tur-

bulence and the acoustic field is responsible for wave - mean flow interaction in nearly

incompressible flows (Dastgeer and Zank, 2006). The volume expansion, due to the

density inhomogeneity is the factor influencing atmospheric flows (Bühler, 2009). In a

reacting flow, the volume expansion due to the heat release rate from chemical reaction

influences the wave - mean flow interaction. The heat release rate can be fluctuat-

ing in a thermo-acoustic system due to unsteady flow. In this chapter, we will show

that this volume expansion can be a significant coupling mechanism that lead to wave

- mean flow interaction. This interaction is shown to be a suitable representation of

acoustic - hydrodynamic interaction in a thermo-acoustic system. In such systems, a

positive feedback loop between the acoustic sources in a reacting flow and acoustic

pressure can lead to self sustained acoustic oscillations (Poinsotet al., 1987; Culick,

1968, 1976a, b, 1997, 2006; Zinn, 1968; Yang and Culick, 1986; Poinsotet al., 1987;

Candelet al., 2009; Kelleret al., 1982; Duroxet al., 2005; McIntosh, 2007; Duchaine

et al., 2009; Wuet al., 2003; Wu, 2005; Subramanianet al., 2013; Mariappan and Su-

jith, 2011).

Fluctuations in the heat release rate also result from this acoustic oscillation. Vortex

shedding (Poinsotet al., 1987) characterizing the unsteady reacting flow or intrinsic

instabilities of flame (Searby, 1992) also cause localized heat release rate fluctuations.

One of the reasons for the spatial inhomogeneity is due the disparity in the spatial scales

corresponding to these fluctuations and the length scale describing the long wavelength

acoustic wave. In this chapter, we will attempt to incorporate the influence of heat

release rate fluctuations on the interaction between flame, flow and the acoustic field.
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3.1.1 Coupling mechanisms

The mechanisms responsible for the coupling of the acousticfield with the heat release

rate are to be investigated. Such a mechanism, proposed by (Dunlap, 1950), shows

that the thermal fluctuations or acoustic pressure fluctuations in a reacting flow can

influence the reaction rate. Earlier theoretical studies (Clavin et al., 1990, 1994; Pelce

and Rochwerger, 1992), also point towards this type of coupling. They used the terms

‘temperature coupling’ and ‘pressure coupling’ to describe this mechanism.

Velocity coupling mechanism introduced by (Markstein, 1970), describing the heat

release rate fluctuation due to the gas flow velocity around the flame, is also a possible

coupling mechanism. The modified flow field near the flame further causes the heat

release rate fluctuation. We show that the aforementioned coupling mechanisms result

in the nonlinear evolution of acoustic pressure amplitude.

The nonlinear evolution of acoustic field variables has beentheoretically studied by

various researchers (Wuet al., 2003; Clavinet al., 1990, 1994; Pelce and Rochwerger,

1992). From their investigations, the need for determiningthe characteristic time scale

for the evolution of the acoustic field is evident. The two time scales - one for describing

the acoustic wave propagation and another for describing the evolution of acoustic pres-

sure amplitude - were included in the theoretical analysis of thermo-acoustic instability

(Wu, 2005; Clavinet al., 1990, 1994; Pelce and Rochwerger, 1992).

The coupling mechanisms between the acoustic field and the hydrodynamic field

are studied analytically when the reaction zone is compact;i.e. length scale of the

reaction zone is much less than the acoustic wavelength (Wuet al., 2003; Wu, 2005;

Matalon and Matkowsky, 1982). Then the reaction zone presents a discontinuity. The

acoustic velocity across this discontinuity can be relatedby Rankine-Hugoniot relation

(Wu et al., 2003; Wu, 2005). The heat release rate and the acoustic fieldinfluence

each other through velocity coupling (Matalon and Matkowsky, 1982; Wuet al., 2003;

Wu, 2005). However, when the heat release rate is distributed (for example, in a well

stirred reactor), the flame is not a discontinuity. The acoustic pressure varies across the

flame. Pressure coupling and temperature coupling dominatesuch cases (Clavinet al.,

1990, 1994). We believe that the contribution from the fluctuations (order of magni-
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tudes of the acoustic velocity, acoustic pressure and thermal fluctuations) determines

the coupling mechanism. (Clavinet al., 1990) studied these contributions. We will

show in this chapter that the orders of magnitudes of the fieldvariables also determines

the higher order nonlinear equations.

3.1.2 Nonlinear mechanisms

A study by Clavinet al. (1994), showed that the heat release rate fluctuation due to

turbulence determined the nonlinear evolution of the acoustic pressure amplitude. This

nonlinear behavior caused the transition of thermo-acoustic system to instability or self

sustained oscillations. The nonlinear effects can also arise from the ‘gas dynamic non-

linearity’ (Culick, 1976a, b) for compressible flows. Such nonlinearities arise from

sources such asu′.∇u′ andp′∇p′, whereu′ andp′ are the acoustic velocity and pres-

sure respectively. For weak compressibility; i. e., for lowMach number flows, these

terms are negligible.

From the aforementioned discussions, we know that weak compressibility can in-

fluence the nonlinear behavior of a thermo-acoustic system.The nonlinear behavior

causing the transition to instability arises from the coupling mechanisms between the

acoustic field and the hydrodynamic field. In this chapter, wewill show that such a

coupling mechanism arises from the dilatation term due to chemical reaction. The vol-

ume dilatation is one of the acoustic sources in the reactingflows. First we will derive,

from the governing equations for compressible fluid flow, a set of acoustic perturbation

equations describing the acoustic sources in reacting flows. Then the coupling mech-

anisms will be determined from the sources. We show that thiscoupling mechanism

is described by coupled convection reaction diffusion (CRD) equations. The influence

of physical parameters, such as heat release rate, on the stability of a thermo-acoustic

system is described by these equations. CRD equations are nonlinear and hence predict

the nonlinear evolution of acoustic pressure amplitude.
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3.2 Derivation of nonlinear equations from compress-

ible fluid flow equations

3.2.1 Governing equations

The governing equations are given as follows.

∂ρ

∂t
+∇.(ρ~u) = 0 (3.1)

∂ρu

∂t
+∇.(ρ~u~u) + 1

γM2
∇p = 1

Re
∇.τ (3.2)

1

(γ − 1)

Dp

Dt
= − γ

(γ − 1)
p∇.~u+H Da Q̇+

1

RePr
∇2T (3.3)

∂ρYi
∂t

+∇.ρYi~u =
1

ReSc
∇.ρD∇Yi +Daω̇k (3.4)

These equations are nondimensionalized by their referencevalues (Kleinet al., 2001).

For a compressible fluid flow, Eqs. (3.1-3.4) represent the continuity, momentum, en-

ergy and species conservation equations respectively.ρ, p andT are density, pressure

and temperature respectively.~u is the velocity vector. Arrhenius law governs the re-

action rateω̇k. In Eq. (3.3),Da, H and Q̇ are the Damkohler number, heat release

parameter and heat release rate respectively.

3.2.2 Method of multiple scales

An asymptotic expansion is constructed following the procedure outlined in Chapter

2. For a physically meaningful expansion, we use earlier theoretical studies (Clavin

et al., 1990, 1994; Pelce and Rochwerger, 1992) as guidelines. These studies by Clavin

et al. (1990), and Pelce and Rochwerger (1992) suggest the orders of magnitude for

the field variables in the context of combustion instability. With the acoustic pressure

and thermal fluctuations of the same order (Clavinet al., 1990) and the acoustic ve-
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locity perturbationO(1/M) times the acoustic pressure perturbation, the perturbation

variables are incorporated into the asymptotic expansion as follows:

ρ = ρ0 + ǫ2ρ2 (3.5)

~u = ~u0 + ǫ~u1 (3.6)

p = p0 + ǫ2(p2h + p2a) (3.7)

T = T0 + ǫ2T2 (3.8)

In Eqs. (3.5-3.8),ǫ is the small number used for preparing the asymptotic sequence.

Here, ǫ is proportional to the Mach number (ǫ =
√
γM). The singularity is seen

directly from Eq. (3.2). The coefficient1/(γM2) of the pressure gradient term in

Eq. (3.2) causes the solution to diverge asM → 0. To eliminate the singularity, the

hydrodynamic pressure variablep2h is chosen to be of second order (ǫ2) in the solution

expansion (3.7) (Kleinet al., 2001). For the construction of solution for heat release

rate, we follow the suggestion by (Clavinet al., 1990). The mean heat release rateQ̇0

and the heat release rate fluctuation (due to the acoustic wave) Q̇′ are expressed to be of

the same order.

Q̇ = Q̇0 + Q̇′ (3.9)

All the mean flow field variables (here, the hydrodynamic fieldvariables) are written

with subscript0. The only exception is for the hydrodynamic pressurep2h, which is

expressed as a second order term. Acoustic pressure is denoted by the higher order

field variablep2a. Acoustic velocity is~u1. The second order densityρ2 represents the

density fluctuation andT2 represents the second order thermal fluctuation. The heat

release rateQ̇0 arises from the influence of hydrodynamics alone (due to the steady and

unsteady part of the flow). The influence of the acoustic wave on the heat release rate

(Q̇′) is represented at the same order of the mean heat release rate. The next step is to

incorporate multiple scales into the governing equations.
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3.2.3 Incorporating multiple time and space scales

The low Mach number flow is characterized by two time scales and two length scales

as τ = τ ′/ǫ andη = ξ/ǫ, whereτ and τ ′ are the acoustic and the convective time

scales respectively.η and ξ are the spatial scales representing the flow and the long

wavelength acoustic wave respectively. The temporal operator can be then expressed as

∂/∂t = (1/ǫ)∂/∂τ+∂/∂τ ′. The spatial operator is expressed as∂/∂x = ǫ∂/∂ξ+∂/∂η

(Zank and Matthaeus, 1990).

3.2.4 Obtaining equations at various orders

The asymptotic expansion and operators are substituted into the governing equations

(3.1-3.4). At leading order; i.e.O(ǫ0), we obtain:

∂ρ0
∂τ ′

+∇η · ρ0 ~u0 = 0 (3.10)

∂ρ0 ~u0
∂τ ′

+∇η · (ρ0 ~u0 ~u0) +∇ηp2h −
1

Re
∇η · τ0 = 0 (3.11)

1

(γ − 1)

∂p0
∂τ ′

=
−γ

(γ − 1)
[p0∇η · ~u0] +HDa(Q̇0 + Q̇′) +

1

RePr
∇2

ηT0 (3.12)

∂ρ0Yi0
∂τ ′

+∇η.ρ0Yi0 ~u0 =
1

ReSc
∇.ρ0D∇Yi0 +Daω̇k (3.13)

p0 = ρ0T0 (3.14)

Eqs. (3.10-3.13) imply that the unsteady hydrodynamics andits influence on heat re-

lease rate are described by the short length scaleη and the convective time scaleτ ′.

Following (Zank and Matthaeus, 1990), the evolution of~u1 on the fast time scale

is obtained by collecting terms ofO(ǫ) from Eq. (3.2) after the substitution of solution

expansion.
∂ρ0~u1
∂τ

+∇ηp2a = 0 (3.15)
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The evolution equation for second order density is obtainedatO(ǫ) as follows:

∂ρ2
∂τ

+∇η.(ρ0~u1) +∇ξ.(ρ0 ~u0) = 0 (3.16)

Equation (3.16) involves two spatial operators - one derivative with respect to the short

length scale and another derivative with respect to the longlength scale. This may

lead to an unbounded solution (∇ξ = 1/ǫ∇η) as ǫ → 0. This is the consequence

of the dilatation term∇. ~u0. The dilatation term is the consequence of the volume

expansion from heat release rate. Zank and Matthaeus, in their approach, has neglected

this term to ensure convergence. In combustion, dilatationcannot be ignored as it is one

of the acoustic sources. To ensure convergence, we follow a different approach with

averaging. Averaging over the short length scale, the evolution equation forρ2 in the

acoustic time scale is obtained.

∂ρ2
∂τ

= −∇ξ.ρ0 ~u0 (3.17)

Integration inτ yields,

ρ2 = τ [−∇ξ.ρ0 ~u0] (3.18)

ρ0, u0 andT0 (the hydrodynamic field variables) are independent of the acoustic time

scale. Thenρ2 → ∞ asǫ → 0 which is the case sinceτ = τ ′/ǫ. To guarantee the

validity of asymptotic expansion, we impose the solvability condition as∇ξ.ρ0 ~u0 = 0.

In other words, we have shown that the hydrodynamic field variables are independent of

the long length scale. The fast time scale evolution equation for the density perturbation

ρ2 is obtained as:
∂ρ2
∂τ

+∇η.(ρ0~u1) = 0 (3.19)

At O(ǫ), the evolution equation for acoustic pressure on the acoustic time scale is ob-

tained.

∂p2a
∂τ

+ γp0∇η~u1 = −γp0∇ξu0 +
γ

RePr
[∇η∇ξT0 +∇ξ∇ηT0] (3.20)
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Integration with respect toτ leads to

p2a = τ [−γp0∇ξu0 +
γ

RePr
[∇η∇ξT0 +∇ξ∇ηT0]]− γp0

∫

∇η~u1 + C (3.21)

whereC is C(t, η, ξ). We know that the acoustic velocity~u1 is a function ofτ . The

above expression shows that the terms with coefficientτ will grow linearly asǫ → 0.

Therefore, another solvability condition imposed to ensure the validity of asymptotic

expansion is as follows:

−γp0∇ξu0 +
γ

RePr
[∇η∇ξT0 +∇ξ∇ηT0] = 0 (3.22)

Then, from Eq. (3.21), the evolution equation for acoustic pressurep2a on the acoustic

time scale is obtained as
∂p2a
∂τ

+ γp0∇η~u1 = 0 (3.23)

From Eqs. (3.15) and (3.23), the linear wave equations for~u1 andp2a are obtained as

∂2p2a
∂τ 2

−∇η.c
2
0∇ηp2a = 0 (3.24)

∂2~u1
∂τ 2

− c20∇2
η~u1 = 0 (3.25)

wherec0 is the speed of sound. Then, we will assume a solutionAi(η, ξ, τ
′)eiωτ for

the perturbation field variables, whereAi = (ρ̂2, ~̂u1, p̂2a, T̂2) andeiωτ is the part of the

solution which satisfies Eqs. (3.24) and (3.25). These equations imply that whenever

there is a non-zero amplitudeAi, the acoustic pressure and velocity field variables admit

an oscillatory solution.

The momentum equation atO(ǫ), the continuity equation atO(ǫ2) and the energy

equation atO(ǫ2) yield the evolution equations for~u1, ρ2 andp2a on the convective time

scale. The solution formAi(η, ξ, τ
′)eiωτ is substituted in the equations for~u1, ρ2 and

p2a. Applying the solvability conditions and collecting termswith coefficienteiωτ , a set
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of weakly nonlinear equations are obtained for the convective time scale.

∂~̂u1
∂τ ′

+
1

ρ0
∇ξp̂2a = − ~u0.∇η~̂u1 − ~̂u1.∇η ~u0 (3.26)

+
1

ρ0Re
∇2

η~̂u1

∂ρ̂2
∂τ ′

+ ρ0∇ξ~̂u1 = −∇η.(ρ̂2 ~u0) (3.27)

∂p̂2a
∂τ ′

+ γp0∇ξ~̂u1 = − ~u0.∇ηp̂2a − γp̂2a∇η. ~u0 (3.28)

+
γ

RePr
∇2

ηT̂2

The equation of state atO(ǫ2) is obtained as follows:

p2h + p2a = ρ0T2 + ρ2T0 (3.29)

Eqs. (3.26-3.28) have two spatial derivatives with respectto two length scales (η andξ).

Assumingu0 → 0 asξ → ∞ (far away from the heat source), the evolution equations

for long wavelength acoustic wave can be obtained as:

∂~̂u1
∂τ ′

+
1

ρ0
∇ξp̂2a =

1

Re
∇2

η~u1 (3.30)

∂ρ̂2
∂τ ′

+ ρ0∇ξ~̂u1 = 0 (3.31)

∂p̂2a
∂τ ′

+ γp0∇ξ~̂u1 =
γ

RePr
∇2

ηT2 (3.32)

From Eqs. (3.30-3.32), we see that the evolution of long wavelength acoustic waves

is also governed by the dissipative forces. These dissipative forces are not found in pre-

vious analyses (Wuet al., 2003; Wu, 2005). In flows such as low to moderate Reynolds

number flows, the dissipative forces cannot be neglected. Insuch flows our analysis

gives a better picture of flow - acoustic interaction. The damping of the long wave-

length acoustic wave can result from the dissipative forces.
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The evolution of acoustic field quantities on a short length scale, by assuming a

solution of the formA(η, τ ′)eiωτ , is obtained as follows:

∂~̂u1
∂τ ′

+ ~u0.∇η~̂u1 + ~̂u1.∇η ~u0 = − 1

ρ0Re
∇2

η~̂u1 (3.33)

∂ρ̂2
∂τ ′

+∇η.(ρ̂2~u0) = 0 (3.34)

∂p̂2a
∂τ ′

+ ~u0.∇ηp̂2a + γp̂2a∇η.~u0 =
γ

RePr
∇2

ηT̂2 (3.35)

Equations (3.33-3.35) describe the acoustic - hydrodynamic coupling. As discussed

earlier, we have now obtained the coupling equations that describe the wave - mean

flow interaction. For the physical phenomenon we study, we obtained the wave and

mean flow variables as pressure and velocity corresponding to the acoustic and hydro-

dynamic fields respectively. The terms~̂u1.∇η~u0 and~u0.∇η~̂u1 in Eq. (3.33) and the

termsp̂2a∇η.~u0 and~u0.∇ηp̂2a in Eq. (3.35) represent the mutual interaction of wave

and mean flow.

The modification of the field around the flame arises from the dilatation∇η. ~u0.

The modified flow velocity is coupled with the acoustic velocity through~̂u1.∇η ~u0 and

~u0.∇ηû1 terms in Eq. (3.33). These are Reynolds forces, which describe the mutual

interaction between the acoustic field and the hydrodynamicfield (Dastgeer and Zank,

2006). These terms are also known as convective (~u0.∇ηû1) and lift-up terms (̂~u1.∇η ~u0)

in the study of destabilization of parallel flows which may eventually lead to turbulence

(Marquetet al., 2009). Here, we show that similar mechanism dominates the coupling

of flow field near the flame with the acoustic field. The Reynoldsforce form a significant

source term for acoustic field.

3.3 Concluding remarks

Perturbation equations are derived in this chapter, describing the flow - flame - acoustic

interaction, using the method of multiple scales. We recover the linear wave equa-
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tions for the acoustic field on the acoustic time scale. On theconvective time scale,

we derived perturbation equations describing wave - mean flow interaction. Through

these perturbation equations, we show that the volume dilatation which arise from com-

bustion can influence the acoustic velocity and pressure perturbations. A new mecha-

nism, representing the velocity coupling, is represented by convective and lift up mech-

anisms. The sources of sound generation, obtained from acoustic perturbation equa-

tions, include dilatation due to heat release, convective effects of hydrodynamic field

and thermal dissipation. The influence of unsteady flow field is captured using the

termsp̂2a∇η. ~u0 and ~u0.∇ηp̂2a in Eq. (3.35). These terms are the sources to be com-

puted from the incompressible flow field. The perturbation Eqs. (3.33-3.35) show that

the interaction between the hydrodynamic and acoustic fields is weakly nonlinear; i.e.

the coupling terms are the product of a mean flow term (leadingorder) and a perturba-

tion quantity (small compared to the leading order term). The interaction is revealed on

the hydrodynamic length scale where the convective and entropy sources are present.

As discussed in chapter 1, we now can identify various sources from the perturbation

equations derived.

49



CHAPTER 4

Identifying sources from acoustic perturbation

equations

The combustion generated sound derives its energy from various types of sources. For

example, heat release acts as an acoustic pressure source (Ducruix et al., 2005). Since

flow field affects the heat release rate during combustion, flow dynamics also influ-

ence the enhancement of acoustic pressure. Among these flow phenomena, widely

seen in combustor geometries is the presence of vortex generation and the shedding

of vortices. These vortices trap and carries with them the unburned gases, creating a

non-uniform distribution of fuel in the combustor. The combustion, therefore happens

non-uniformly, resulting in the non-uniform heat release rate. These hot spots of gas

transported by the vortices travel at convective speed (Ducruix et al., 2005; Poinsot

et al., 1987). Therefore, the source of sound is a convective - acoustic type (Zinn and

Lieuwen, 2006; Shanbhogueet al., 2009).

The convective - acoustic nature of the sources becomes significant in a low Mach

number combustion. In low Mach number reacting flows, the convective processes and

the acoustic processes act on different time scales. Sources, therefore act on multiple

time scales. The behavior of acoustic field can be compared tothat of a wave (see Chap-

ter 11 Zinn and Lieuwen, 2006), that propagates on the acoustic time scale. However,

the entropy and convective ‘waves’ are transported at the convective velocity on the

convective time scale (see Chapter 11 Zinn and Lieuwen, 2006). Therefore, for each

field variable; i.e. the density, velocity, pressure and temperature, there is a component

that is transported on the acoustic time scale and a component transported at the con-

vective time scale. In this chapter, we attempt to understand the relevance of each of

these components (acoustic, entropy and convective sources) in exciting the acoustic

field.



4.1 How sources are modeled in theoretical analysis?

The entropy, acoustic and convective sources in a combustion system are related to heat

release rate arising from chemical reaction. The effect of heat release rate on the fluid

flow field is through volumetric expansion (∇.u).

∇.u =
−a
γp

Dp

Dt
− 1

ρ

n
∑

k=1

σkω̇k (4.1)

wherek = 1, 2, ..n represents the reactants. The volumetric expansion is one of the

sources influencing the acoustic pressure. Volumetric expansion also forms one of the

sources for the vorticity in a combustor.

DΩ

Dt
= (Ω.∇)u− Ω(∇.u) + ∇ρ×∇p

ρ2
(4.2)

Therefore, investigations that focus on acoustic-vortex-flame interaction incorporate the

influence of volumetric expansion to study the coupling mechanism between the acous-

tic field, flame and the flow field. However, the length scales ofthe flow, flame and the

acoustic wave are different.

4.1.1 Time scales and length scales

The length scale of acoustic wave may range from10−2 to 100 (Lieuwen, 2003). The

length scale for the vortices range from10−5 to 10−1. For acoustic - flame - vortex

interaction to take place, their length scales should have an overlap (Zinn and Lieuwen,

2006, Chapter 11). Whenever there is an overlap in the lengthscale the transfer of

energy between the acoustic and hydrodynamic fields is possible.

The coupling between the hydrodynamic field and the heat release rate is due to

the presence of a thin reaction zone, with length scale comparable to the small scale

eddies in the turbulent flows (Kim and Menon, 2000). However,in a laminar flow,

this overlap is absent. When the flow is laminar, the overlap in time scales causes the

acoustic - hydrodynamic interaction (Clanetet al., 1999). Use of the method of multi-

ple scales (MMS) to derive the perturbation equations is advantageous in this context.
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Using MMS, perturbation equations can be obtained for different time and space scales.

In this chapter, from the perturbation equations derived inChapter 3, we show that the

overlapping time and space scales can be represented by the convective time scale and

the short length scale (representing incompressible fluid flow processes) respectively.

The perturbation equations, obtained in Chapter 3, can now be examined for the pres-

ence of the acoustic, entropy and convective sources.

Equations (3.15, 3.19, 3.23) are the evolution equations for acoustic fluctuations on

the acoustic time scale and Eq. (3.33, 3.34, 3.35) are evolution equations for acoustic

amplitude on the convective time scale. The asymptotic expansions (3.5, 3.6, 3.7,3.8)

contains the mean flow and fluctuating quantities. The final acoustic perturbation equa-

tions are the acoustic time scale Eqs. (3.15, 3.19, 3.23) andthe convective time scale

Eqs. (3.33, 3.34, 3.35). These equations describe the evolution of both acoustic modes

and convective modes due to the convective (due to flow), acoustic, and entropy (due

to the propagation of heat release rate fluctuations) sources. The identification of these

modes and their corresponding sources is done using a methodproposed by Ewert and

Schröder (2003). Towards this purpose, the equations for fluctuations are written in the

formAŨ = G̃. Each element iñU is expressed as:

Ũ = (ρ̃2(t, τ, η), ũ1(t, τ, η), ṽ1(t, τ, η), p̃2a(t, τ, η)) (4.3)

Ũ is a combined Fourier and Laplace transform of the dependentvariables. The com-

bined Fourier - Laplace transform is expressed as:

φ̃(α, β, ω) =
1

(2π)3

∫

∞

0

∫

∞

−∞

∫

∞

−∞

φ(x, y, t)e−i(αx+βy−ωt)dxdydt (4.4)

G̃ = (S̃1, S̃2, S̃3, S̃4)
T represents the source vector. Applying the transformations to the

evolution equations for density fluctuation (Eq. (3.19)), acoustic velocity and pressure

field variables (Eq. (3.15) and Eq. (3.23) respectively), wefind the first element of the

source vector̃S1 = −iℑ(u1∇ηρ0) (arising from the source term for Eq. (3.19)).

The first element̃S1 representing the density gradient due to heat release rate,is an

entropy source. Also, we now know that the entropy source acts on the acoustic time

scale. However, we still have to examine the contribution ofentropy source on exciting

52



the acoustic modes. For the entropy source to have an effect on the acoustic time scale,

we need to have a heat source that have modulation on the acoustic time scale. However,

in this thesis we have assumed the mean heat release rate and the modulated heat release

rate of the same order. We made that assumption based on a previous study of the

pressure coupling mechanism (Clavinet al., 1990). As a consequence, we may not

expect the entropy source to have an influence on the acousticmodes. We will prove so

using an acoustic filtering approach.

The second, third and fourth element corresponds to the initial conditions ofu1,

v1 andp2a respectively, obtained as a result of Laplace transform. These correspond

to the acoustic field that is established without the contribution from any sources in

the reacting fluid flow. When there is no driving mechanism that sustains the initially

established acoustic field, the amplitude of the field variables p2a and~u1 dies down.

Therefore, our intention is to extract the sources that drive the acoustic field from the

fluid flow field. We now know the sources. The next step is to determine the modes

that are being driven by the above sources. Towards this purpose, we construct a matrix

A that yields the eigenvalues for acoustic time scale equations. The eigenvalues are as

follows:

λ1 = ω − cs(α
2 + β2)1/2, λ2 = ω, λ3 = ω, λ4 = ω + cs(α

2 + β2)1/2 (4.5)

The eigenvectors are

x1 =
(

c−2
s α/ρ0cs(α

2 + β2)1/2 β/ρ0cs(α
2 + β2)1/2 1

)T

(4.6)

x2 =
(

1 0 0 0
)T

(4.7)

x3 =
(

0 β −α 0
)T

(4.8)

x4 =
(

c−2
s −α/ρ0cs(α2 + β2)1/2 −β/ρ0cs(α2 + β2)1/2 1

)T

(4.9)

wherecs is the speed of sound.

The first and the fourth eigenvectors correspond to the acoustic modes. These modes

correspond to the waves traveling at the speed of sound. Their presence is expected as

we are analyzing the equations on the acoustic time scale. The second eigenvector has
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only the first element non-zero and corresponds to the convection of density. Therefore,

the second eigenvector is an entropy mode. The entropy mode arises from the density

gradient source or the entropy sourceS1. The second eigenvector does not correspond

to the mode propagation at sound speedcs. Therefore, second mode is not excited by

the acoustic time scale sources.

The third one corresponds to the vortical mode that arises due to the presence of

acoustic velocity components (i.e.u1 andv1). Such a mode will be present only if

two dimensional or higher dimensional acoustic fields are considered (because ofα and

β appearing together). In a one dimensional or longitudinal acoustic field, the third

eigenvector will represent a convective mode. Now, to determine the sources that excite

specific modes, a filtering matrix is constructed. For an acoustic mode, the filtering

matrix isT a = x1(x
−1
1 ) + x4(x

−1
4 ). Similarly, the filtering matrix for the entropy mode

T e = x2x
−1
2 and the filtering matrix for the vortical modeT v = x3x

−1
3 are constructed

from the eigenvectors obtained. The sum of these matrices should be an identity matrix

(i.e. T a + T e + T v = I), confirming that the filtering matrices for all modes are

accounted. Acoustic sources are obtained as

G̃a = T aG̃ =
(

Sa
1 Sa

2 Sa
3 Sa

4

)T

(4.10)

where,

Sa
1 = p∗2a(initial)c

−2
s /2π (4.11)

Sa
2 = u∗1(initial)α

2/2π(α2 + β2) + v∗1(initial)αβ/2π(α
2 + β2)

Sa
3 = u∗1(initial)αβ/2π(α

2 + β2) + v∗1(initial)β
2/2π(α2 + β2)

Sa
4 = p∗2a(initial)/2π

The source vectorsSa
i , wherei = 1, 2, 3, 4, consist of contribution from the initial con-

ditions of acoustic field variables (i.e.p∗2a(initial), u
∗

1(initial) andv∗1(initial)). The Fourier

componentsα andβ are constants. Our approach has helped to decompose acoustic,

vortical and entropy modes from the governing equations. Note that we have not as-

sumed the nature (acoustic, vortical or entropy) of the fieldvariables at the beginning

of our derivation. The nature of field variables are obtainedin a straightforward man-
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ner through our derivation. In the previous studies on combustion generated sound, the

acoustic, vortical and entropy modes are accounted for using a Helmholtz decomposi-

tion of field variables (Noirayet al., 2009). In such an approach, the decomposition of

acoustic, vortical and entropy modes are made in the beginning of the analysis. There-

fore, each field variable represents only one mode. However,when there are two time

scales present, the field variables evolve on different timescales. Then, each of the

field variables is excited by different type of sources. Use of MMS is advantageous

in this context. The decomposition of field variables into various modes is helpful in

describing the acoustic-flame-vortex interaction (Menon,2005b). In this manner, the

contribution from each mode - acoustic, vortical and the entropy fluctuations due to

unsteady combustion - in driving the combustion instability can be analyzed. For ex-

ample, in the case of evolution equations on the acoustic time scale, we now know that

there are three modes - acoustic, vortical and entropy. Any field variable can be now

decomposed asφ = φa + φv + φe, whereφ = [ρ, ~u1, p2a]. We can also analyze the

equations on different time scales and length scales. For example, on the acoustic time

scale, we can now say that for a vanishing initial condition,there are no sources that

drive the acoustic field. As discussed previously, from the source vectorG̃a, we now

know that the entropy source (∇ηρ0) arising from heat release rate has no contribution

to the acoustic mode in the acoustic time scale. Now, what arethe sources that drives the

entropy modes?. For the flame-acoustic-vortical interaction to occur, there should be a

feedback from various sources to the entropy mode. Therefore, we extract the entropy

source vector̃Ge from the general source vector̃G, by applying the transformation:

G̃e = T eG̃ (4.12)

whereSi are obtained as:

Se
1 = −~u1.∇ηρ0 + ρ∗2(initial)/2π (4.13)

Se
2 = 0

Se
3 = 0

Se
4 = −p∗2a(initial)/2π ∗ c−2

s
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Here we note that for vanishing acoustic initial conditions, the entropy source arises

only from the density gradient. The density gradient arisesfrom non-uniform combus-

tion. In unsteady combustion, the local fluctuation in the burning rate created by the

propagating coherent structures causes a local change in the density. This local change

in propagated by the convection due to acoustic velocity~u1. This process drives the

entropy mode as indicated by the sourceSe
1. There are no entropy sources that drive

the acoustic field as the sourcesSe
2 andSe

3 are zeros. Also, the entropy sources are not

driven the acoustic pressure field asSe
4 → 0.

For vortical sources, the transformation

G̃e = T vG̃ (4.14)

is applied to obtainedSi as

Sv
1 = 0 (4.15)

Se
2 = (β2/(α2 + β2))u∗1(initial)/2π − (αβ/(α2 + β2))v∗1(initial)/2π

Sv
3 = (−αβ/(α2 + β2))u∗1(initial)/2π + (α2/(α2 + β2))v∗1(initial)/2π

Se
4 = −p∗2a(initial)/2π ∗ c−2

s

The sources indicate the contribution of vortical sources in driving the acoustic velocity

field. Sv
1 = 0 indicate that the vortical sources do not causes density fluctuations.

However, for vanishing initial conditionsSv
2 , Sv

3 andSv
4 also vanishes and driving of the

acoustic velocity and pressure fields is absent.

From the above discussion of sources on the acoustic time scale, in the absence of

any initial acoustic field, the only possible driving mechanism is through the entropy

source. However, when the entropy source causes the second order density fluctua-

tions, the second order density is related to the acoustic pressure perturbation through

the equation of state obtained atO(ǫ2) i.e. Eq. (3.29). Therefore, the relation between

the acoustic pressure and velocity fields is not evident fromthe acoustic time scale equa-

tions. However, the relation between the heat source that creates the density fluctuation

and the acoustic velocity components is revealed through the higher order equations;
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i.e. equations describing the evolution of acoustic field onthe convective time scale.

Applying the transformations (4.4) to the convective time scale Eqs. (3.33, 3.34,

3.35), we obtain the sources that act on convective time scale. Equations (3.33), (3.34)

and (3.35) are examined for sources that drives the fluctuation amplitudes. The eigen-

values are obtained asλ1 = λ2 = λ3 = ω. The corresponding eigenvectors arex1 =
(

1 0 0 0
)T

, x2 =
(

0 1 0 0
)T

, x3 =
(

0 0 1 0
)T

x3 =
(

0 0 0 1
)T

.

We see from the eigenvectors that the convective time scale equations govern the evo-

lution of convection modes. The sources that drives the amplitudes are found to be

Sc
1 = ρ∗2initial

/2π − iℑ(ρ2∇η. ~u0) (4.16)

Sc
2 = u∗1initial

/2π − iℑ(u1∇η. ~u0) + iℑ( 1

ρ0Re
∇2

ηu1)− ℑ( ~u0.∇ηu1)

Sc
3 = v∗1initial

/2π − iℑ(v1∇η. ~u0) + iℑ( 1

ρ0Re
∇2

ηv1)− ℑ( ~u0.∇ηv1)

Sc
4 = p∗2ainitial

/2π − iℑ(p2a∇η. ~u0) + iℑ( 1

RePr
∇2

ηT2)− ℑ( ~u0.∇ηp2a)

The common factor in each of these source terms is the dilatation term that arise from

the heat release rate (∇η.~u0) and the diffusion terms. The dilatation term couples the

amplitudes of acoustic pressure, velocity and the density fluctuations. Therefore, the

dilatation term serves to couple the heat release rate from the chemical reaction to the

acoustic velocity field. The nature of this coupling is through the mutual transportation

of the acoustic and hydrodynamic velocity fields. This mutual transportation is through

a weak nonlinear coupling of the acoustic and hydrodynamic fields.

The weak nonlinear interaction between the acoustic and hydrodynamic fields act as

a driving mechanism for the acoustic pressure amplitude. This nonlinear interaction is

a major driving mechanism considered in the study of hydrodynamic instability (Mar-

quetet al., 2009) and magnetohydrodynamic instability (Dastgeer andZank, 2004). In

Eq. (3.33),~u0.∇ηû1 andû1.∇η ~u0 represent the nonlinear interaction. These terms are

also known as Reynolds forces (Dastgeer and Zank, 2004). Reynolds forces,~u0.∇ηû1

and û1.∇η ~u0, govern the mutual transportation for acoustic and hydrodynamic field

quantities. In the context of instabilities that causes transition to turbulence,~u0.∇ηû1

and û1.∇η ~u0 are also called convective and lift-up terms respectively (Marquetet al.,
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2009). These mechanisms have not been discussed before in the study of combustion-

acoustic coupling. The gas expansion around the flame causesthe modification of the

flow field around the flame. The modified flow field causes change in the acoustic ve-

locity amplitude through convection (i.e.~u0.∇ηû1). Then, fromSc
2 andSc

4 we know

that the nonlinear sources such as Reynolds forces are significant in the evolution of

amplitudes of acoustic field variables.

4.2 Concluding remarks

Acoustic perturbation equations, derived using the methodof multiple scales, reveals

sources at various time and space scales. The significance ofentropy, vortical and

acoustic modes in the evolution of acoustic field is studied.The convective-acoustic

nature of the sources is investigated. However, we see that the acoustic sources are

present only on the acoustic time scale. The convective sources are present on the

convective time scale. Therefore, a mechanism that couplesthe processes on two time

scales is needed for the combustion-acoustic interaction.We observe that the dilatation

arising from heat release rate is a possible candidate for this mechanism. The dilatation

can cause changes in density at leading order, which in turn becomes the entropy source

∇ηρ0 on the acoustic time scale.

The separation of sources according to the time scale in which they act is an outcome

of applying the method of multiple scales (MMS). We also propose that the assumed

order of heat release rate fluctuation is significant in determining the significance of

each of the sources. We consider that an investigation in this direction will prove to be

an improvement to the Helmholtz decomposition. In the analysis of a thermo-acoustic

system, we have assumed the magnitude of heat release rate fluctuation to be ofO(1).

Therefore, the sources that drive the acoustic pressure amplitude appear on convec-

tive time scale. As a consequence, we show that the volume dilatation which arises

from combustion can influence the acoustic velocity and pressure perturbations. This

interaction is represented by convective and lift up mechanisms. The sources of sound

generation, obtained from acoustic perturbation equations, include dilatation due to heat

release, convective effects of hydrodynamic field and thermal dissipation.
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The convection of hot spots and the influence of unsteady flow field is captured

using the termŝp2a∇η. ~u0 and ~u0.∇ηp̂2a in Eq. (3.35). These terms are the sources

to be computed from the incompressible flow field. The types ofsources - acoustic,

entropy and convective - are obtained from the perturbationequations. The perturbation

Eqs.(3.33-3.35) show that the interaction between the hydrodynamic and acoustic fields

is weakly nonlinear. The interaction is revealed on the hydrodynamic length scale where

the convective and entropy sources are present.
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CHAPTER 5

Nonlinear convection reaction diffusion equations

In this chapter, we describe the stability of a thermo-acoustic system by deriving a

set of nonlinear equations. Our nonlinear equations belongto the class of reaction

diffusion (RD) systems. RD system are well known to describethe bistable nature of

many chemical reacting systems, Turing’s work on morphogenesis being one among

them (Turing, 1952). RD systems are widely studied in the context of pattern forming

instabilities (Hoyle, 2006). Bistable solutions are an important characteristic of RD

systems (Ebeling and Malchow, 1979).

The reaction diffusion equations are classified according the nonlinear terms present

in these equations. Fisher’s equation has a quadratic nonlinearity, whereas Newell-

Whitehead-Segel equation used in the field of Rayleigh-Benard convection has a cubic

nonlinearity (Gilding and Kersner, 2004). Zeldovich equation, with cubic nonlinearity,

exhibiting a traveling wave solution is popular in combustion literature (Buckmaster,

1985). The traveling wave connects (form an interface between) the region of burnt and

unburnt gases in a combustion process. The important characteristic of RD system is

that, due to the presence of a diffusion term, a local disturbance can spread throughout

the entire domain. Therefore, as proposed by Turing, a locally stable solution may

become unstable.

RD system have a nonlinear reaction term and diffusion term.The diffusion co-

efficient is specific to the physical situation; i.e. the diffusion coefficient in the RD

system corresponding to the chemically reacting system is ameasure of the diffusion of

mass concentration. In a system without the effects of fluid flow, the diffusion governs

the transport of small but finite amplitude disturbances (perturbation in the concen-

tration). However, in a thermo-acoustic system, the influence of fluid flow cannot be

neglected. Therefore, a simple RD system will not suffice to describe the unstable phe-

nomena caused by localized small pressure disturbances. Based on our perturbation

equations Eqs. (3.33-3.35) governing the wave-mean flow interaction, we are going to



derive nonlinear convection reaction diffusion equationsto describe the instabilities in

a thermo-acoustic system. Here, we also include the influence of fluid flow through a

convection term.

The combustion resulting from the chemical reaction influences the flow field in

a thermo-acoustic system. In this chapter, we derive a classof nonlinear convection

reaction diffusion (CRD) equations which incorporate the influence of convection. In

the CRD system, the chemical reaction source that causes flowfield modification is

represented by a nonlinear reaction term. This nonlinear reaction term is obtained from

the dilatation term. Therefore, we show that the dilatationthat arise from combustion

causes the flow field modification. From Eq. (3.12),

∇η · ~u0 =
γ − 1

γp0
HDa(Q̇0 + Q̇′) +

γ − 1

γp0RePr
∇2

ηT0 −
1

γp0

∂p0
∂τ ′

(5.1)

The influence ofQ̇ andQ̇′ (heat release rate fluctuation) on the acoustic pressure

field is seen from the dilatation term. Expression (5.1) for dilatation is substituted in

Eq. (3.35) to obtain:

∂p̂2a
∂τ ′

+ ~u0.∇ηp̂2a + γp̂2a[
γ − 1

γp0
HDa(Q̇0 + Q̇′) +

γ − 1

γp0RePr
∇2

ηT0 −
1

γp0

∂p0
∂τ ′

] (5.2)

=
γ

RePr
∇2

ηT̂2

Assuming a single step chemical reaction,Q̇′ can be expressed as:

Q̇′ = Bρ22XY e
−Ea/RT , (5.3)

whereB is the preexponential factor and the density fluctuationρ2 is a function ofτ

andτ ′. However,Q̇ = Q̇0 + Q̇′ appears in Eq. (3.12) as well as in Eq. (5.2). From

the derivation of perturbation equations in Chapter 3, we know that the leading order

variables are independent of the acoustic time scale. Such acondition was necessary

to ensure the convergence of asymptotic expansion.p0 is the leading order pressure

variables. Therefore, to prevent the linear unbounded growth of p0, we should avoid the

dependence oḟQ′ on the acoustic time scale. This is done by expressingQ̇′ in terms of
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ρ̂2(η, t). Substituting a solution of the formAi(η, τ
′)eiωτ in Eq. (3.29), we obtain:

ρ̂2 =
p2h
T0
e−iωτ +

p̂2a
T0

− ρ0
T̂2
T0

(5.4)

As ǫ → 0, τ → ∞, because in the relationτ = τ ′/ǫ, we have assumedτ ′ of O(1) and

τ of O(1/ǫ). In the limit τ → ∞, (p2h/T0)e−iωτ → 0. The expression for̂ρ2 can be

rewritten as:

ρ̂2 =
p̂2a
T0

− ρ0
T̂2
T0

(5.5)

Here, we have removed the dependence of density fluctuation on the acoustic time scale.

Now, the variation of the magnitude of heat release rate fluctuation is on the convective

time scale, reflecting the influence of fluid flow on the acoustic pressure field. The new

expression for heat release rate fluctuation can now be written as:

Q̇′ = Bρ̂22XY e
−Ea/RT (5.6)

Eq. (5.6) is substituted in Eq. (5.2) to obtain:

∂p̂2a
∂τ ′

+ ~u0.∇ηp̂2a =
(γ − 1)HDaω

p0
(
−p̂32a + 2ρ0p̂

2
2aT̂2p2a − ρ20T̂

2
2

T 2
0

) (5.7)

+
γ

RePr
∇2

ηT̂2 −
(γ − 1)p̂2a
p0RePr

∇2
ηT0 −

(γ − 1)HDaρ
2
0ωp̂2a

p0
+
p2a
p0

∂p0
∂τ ′

(5.8)

whereω = BXY e−Ea/RT . Matching the terms of same order, Eq. (5.7) can be rewritten

as follows:

∂p̂2a
∂τ ′

= −~u0.∇ηp̂2a + αp̂32a + θT̂2p̂
2
2a + ϑT̂ 2

2 p̂2a + λp̂2a +
γ

RePr
∇2

ηT̂2 (5.9)

Substituting (5.5) in Eq. (3.34), we obtained an equation for T2.

∂T̂2
∂τ ′

= −~u0.∇ηT̂2 + αT̂2p̂
2
2a + θT̂ 2

2 p̂2a + ϑT̂ 3
2 + λT̂2 +

γ

ρ0RePr
∇2

ηT̂2 (5.10)

Equations (5.9-5.10) are nonlinear evolution equations for acoustic pressure and sec-

ond order thermal fluctuations. The coefficientsα, θ andϑ correspond to the physical

processes in the system such as heat release rate, temperature diffusion and the rate of
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change of the mean pressurep0. The nonlinear terms in Eqs. (5.9-5.10) have contri-

bution from the thermal and acoustic pressure fluctuations.Therefore, the nonlinear

Eqs. (5.9-5.10) represent a ‘pressure - temperature’ coupling.

5.1 Coupling mechanisms

5.1.1 Pressure-Temperature coupling

As suggested by Clavinet al. (1990), the pressure coupling is established whenQ̇′

and p̂2a are of the same order. In our derivation, we have achieved thesame order of

magnitude for acoustic pressure and heat release rate fluctuations withQ̇′ appearing as

a source tôp2a (see Eq. (5.2)). Apart from the coupling between the acoustic field and

the heat release rate fluctuation, we also have the influence of the hydrodynamic field

represented as~u0.∇η (the convective term) in the nonlinear equations. Therefore, using

the nonlinear equations we can explain the acoustic-flame-flow interaction.

5.1.2 Convection reaction diffusion equations

Equations (5.9-5.10) can be written as follows:

∂p̂2a
∂τ ′

+ ~u0.∇ηp̂2a = f(p̂2a, T̂2) +
γ

RePr
∇2

ηT̂2 (5.11)

∂T̂2
∂τ ′

+ ~u0.∇ηT̂2 = g(p̂2a, T̂2) +
γ

ρ0RePr
∇2

ηT̂2 (5.12)

wheref(p̂2a, T̂2) = αp̂32a+θT̂2p̂
2
2a+ϑT̂

2
2 p̂2a+λp̂2a andg(p̂2a, T̂2) = αT̂2p̂

2
2a+θT̂

2
2 p̂2a+

ϑT̂ 3
2 + λT̂2 are nonlinear functions in the convective reaction diffusion equations. The

coefficientsα, θ, ϑ andλ are:

α = −(γ − 1)HDaω

p0T 2
0

(5.13)
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θ = 2
(γ − 1)HDaω

p0T
2
0

ρ0 (5.14)

ϑ = −(γ − 1)HDaω

p0T
2
0

ρ20 (5.15)

λ = − (γ − 1)

p0RePr
∇2

ηT0 −
(γ − 1)HDaρ

2
0ω

p0
+

1

p0

∂p0
∂τ ′

(5.16)

The linear termλp̂2a can be rewritten as−(γ − 1)p̂2a/(p0RePr) × ∇2
ηT0 − (γ −

1)Q̇p̂2a/p0 + (γ − 1)Q̇′p̂2a/p0 + (p̂2a/p0) × ∂p0/∂τ
′. The factorp̂2aQ̇′ represents the

product of the heat release rate magnitude and the acoustic pressure amplitude. This

factor is similar to Rayleigh indexG(x), which is:

G(x) =
1

T

∫

q′(x, t)p′(x, t)dt (5.17)

which represents the product of the heat release rate fluctuation and the acoustic pres-

sure averaged over one oscillation cycle. The oscillation occurs on the fast acoustic

time scale.G(x) > 0 implies the growth of acoustic pressure andG(x) < 0 implies

the damping. The term̂p2aQ̇′, which is obtained by the elimination of fast acoustic

time scale evolution, represents the Rayleigh index. This term is contained in the linear

term. The linear term, therefore determines the linear growth rate. Representing the

acoustic-hydrodynamic interaction as a CRD system has an advantage. Now we can

say that the stability characteristics of a thermo-acoustic system resemble that of any

reaction diffusion system. We can explore the stability of our system using the methods

employed in exploring the stability of a wide variety of other dynamical systems. These

dynamical systems include the popular Rayleigh-Benard convection model (Newell and

Whitehead, 1969), FitzHugh-Nagumo model (for neural oscillators) (FitzHugh, 1955)

and Turing model (for morphogenesis) (Turing, 1952). Therefore, our representation of

thermo-acoustic system as a convective reaction diffusionsystem has many advantages.

For example, the RD equations represent the propagation of afront. The front can rep-

resent the location of inhomogeneity in a system, connecting the homogenous states on

either sides of the inhomogeneity. For example, the flame in athermo-acoustic system

represents a front in an otherwise homogenous hydrodynamicfield. The temperature
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rise at the interface of burnt and unburnt mixtures, caused by a reaction zone is another

example of front in combustion. Schvab-Zel’dovich equation is an RD equations to

compute the propagation of such fronts. In the present context, we will describe the

propagation of localized small pressure perturbation introduced by the heat source.

The CRD equations, with the coefficients representing the physical parameters,

gives insight to the role of each parameter on the stability of the system. The coef-

ficient of the linear term (λ) in Eq. (5.9) shows that acoustic pressure amplitude evolves

linearly due to the rate of change of the mean pressure and themean heat release rate.

As shown by Eq. (3.12), the rate of change of mean pressure, also known as ‘DC shift’,

has contribution from the heat release rate fluctuation due to the acoustic field. The

origin of DC shift and its relation to the acoustic pressure oscillation was theoretically

explained earlier (Flandroet al., 2007). Previous investigations reveal that these pro-

cess, DC shift and growth of acoustic pressure amplitude, share a common mechanism.

We have revealed a new mechanism - coupling of acoustic pressure oscillation with heat

release rate fluctuation - relating the growth in acoustic pressure amplitude with the DC

shift.

Nonlinear terms are derived from the heat release rate fluctuation term. Therefore,

’weights’ of the nonlinear termsα, θ andϑ decide the intensity of heat release rate

fluctuation. These weights are functions of Damkohler numeberDa and heat release

rateω. The weights are therefore functions of physical variables. Their magnitudes

depend on the type of fuel, mass fractions of fuel and air and the temperature in the

system. Another factor that is incorporated inθ andϑ is densityρ0. Influence of these

weights on the stability characteristic of a thermo-acoustic system is demonstrated in

the next section using some examples.

5.1.3 Transition from non-oscillatory state to oscillatory state

In this section we construct an example using which we demonstrate the transitions ex-

hibited by a thermo-acoustic system. In Fig. (5.1), we illustrate the physical meaning of

our example problem. The perturbation (shown by a tiny lump)on the long length scale

acoustic wave represent the short length scale acoustic perturbation. Equations (3.31-
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3.32) describe the spatial evolution of long length scale acoustic field. This evolution

encounters the short length scale dissipative effects in the form of thermal diffusion and

viscous dissipation. On the long length scale, the evolution equations do not have a

source term that drives the acoustic field. On the other hand,the driving terms - the

convection term and the nonlinear term representing the heat release rate fluctuation -

are written with respect to the short length scale variableη. We have also expressed the

dissipative effects on the short length scale in the CRD system. Therefore, the CRD sys-

tem, describing the spatial evolution of perturbations on the short length scale, is more

suitable to study the evolution of any acoustic perturbations. In physical systems, such

a small length scale perturbation is introduced by localized heat sources such as pre-

mixed flame located in a long tube (Wuet al., 2003; Wu, 2005) or electrically heated

mesh in a Rijke tube (Mariappan and Sujith, 2011). The local perturbation grows in

amplitude in time. The perturbation also spread spatially.The spatiotemporal evolution

eventually modifies the acoustic field in the duct. In real combustors, the local fluctua-

tions in the heat release rate can occur from the localized burning of gases entrapped in

vortices (Poinsotet al., 1987). Our model problem serves the purpose of investigating

the influence of such a local heat source on the acoustic-hydrodynamic coupling.

As far as the type of heat source is considered, which is localized in space, the

model problem represents the heat release rate-acoustic interaction in a horizontal Rijke

tube. However, in the previous studies the entire heat source in localized. In our model

problem, the heat release rate fluctuation is localized. Uniform heat release rate is

specified everywhere else. The localized heat release rate,which is higher than the rest

of the computational domain is specified with the help of the coefficients or ’weights’

of the nonlinear terms. The weights are function of heat release rate. Therefore, the

localized fluctuations are specified by providing the valuesof α, θ andϑ to be 1.2 times

their values in the rest of the domain. The localized heat release rate can also occur

when there is a localized perturbation in species mass fractions. However, the species

mass fractions decide the heat release rate. Therefore, we do not specify the values of

species mass fractions separately. We use these assumptions to reduce the complexity

of the model problem. A simple model problem such as the one formulated will help

us to investigate the nonlinear nature of acoustic-hydrodynamic interaction.
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We study the short scale acoustic-hydrodynamic interaction using CRD system. We

have achieved the isolation of long length scale phenomena from the short length scale

phenomena through the derivation (see Eqs. (3.30-3.32)). CRD system, thus obtained,

is the mathematical description of flame-acoustic interaction. Therefore, the present

investigation emphasize the role of short length scale flame-acoustic interaction in es-

tablishing the acoustic-hydrodynamic interaction. The space scale separation that we

achieved is an advantage of applying the techniques of MMS.

Figure 5.1: Illustration of small but finite amplitude localperturbation on the acoustic
field.

A one dimensional domain withN = 56 grid points is created. The CRD system is

solved on the one dimensional domain (see Fig. (5.2)). The number of grid points is

selected based on a convergence study. The coordinatex defines the spatial location. A

small but finite amplitude perturbation (shown in Fig. (5.3)), that represents the small

scale perturbation in Fig. (5.1), is applied at the center ofthe solution domain. The

solution of the acoustic field variables on the long length scale acoustic field is sepa-

rated from solution of the short scale acoustic perturbations. Therefore, assuming an

open-open duct, we impose the same boundary conditions (BC)at both endpoints. We

impose the values at the endpoints to be same as their adjacent points. This is a simple

BC, which we believe will prevent any spurious numerical oscillations and help in the

convergence of numerical solution. Also, this BC is sufficient to study the nonlinear

dynamics of acoustic-hydrodynamic interaction.

BC1 BC2

N=0 N=56

Location of localized heat

release rate fluctuation

Figure 5.2: 1D representation of an open-open tube with flamelocated in the centre.
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Figure 5.3: The initial condition for acoustic pressure perturbation amplitude. X-axis
shows the number of grid points representing the discretized 1D geometry.

Next, we need to choose a bifurcation parameter. We have chosen the coefficient

λ of the linear term for this purpose. Our choice is due to the study by Flandroet al.

(2007), where investigates the significance of DC shift in the transition of acoustic field

from non-oscillatory to oscillatory state. We also have contribution from thermal diffu-

sion and mean heat release rate in deciding the magnitude ofλ. In our bifurcation study,

we use numerical methods available in XPPAUT (Ermentrout, 2002) for the time march-

ing solution and the continuation methods available in AUTO(Doedelet al., 1997) for

constructing bifurcation diagrams. We obtained two types of bifurcations: one, a bifur-

cation that exhibits hysteresis effects and another a supercritical bifurcation that further

bifurcates to create a bistable zone. The later is called a secondary bifurcation (Anan-

thkrishnanet al., 1998).

A model Ginzburg Landau equation (GLE), which is another CRDsystem, was pro-

posed by Chomaz (1992) as a bistable dynamical system model for studying hydrody-

namic stability. Using our derived CRD system, in addition to the study of bistability,

we investigate the variation in saturation amplitude and the variation in the threshold

point as a response to the variation in the weights of nonlinear terms. Figures (5.4-5.6)

show these variations as a result of variation inθ andϑ.

We have a bifurcation that shows the existence of hysteresiszone where there are

two stable states: one is an oscillatory state shown by the higher amplitude state in

Fig. (5.4) and other one is a non-oscillatory state shown by the zero amplitude branch.

Here, since the bifurcation diagram is computed from the evolution equation for acous-

tic pressure amplitude, the zero amplitude branch implies non-oscillatory state (i.e.

p2a = p̂2ae
iωτ , when p̂2a = 0, p2a = 0). This reduction in order, by the separation

68



of fast oscillation, is an advantage of our approach. As a consequence, the origin of

limit cycle oscillations from Hopf bifurcation (Burnley and Culick, 1996; Subramanian

et al., 2013) could be interpreted as the transition from zero amplitude to non-zero am-

plitude branch through pitchfork bifurcation. Computation time can be saved by this

separation. In Fig (5.6), we have another type of bifurcation where two oscillatory

states that bifurcate from a primary supercritical bifurcation. This type of bifurcation

is relevant in mechanical systems (Ananthkrishnanet al., 1998) and in thermo-acoustic

systems (Juniper, 2011).

A unique feature of the CRD system is the type of hysteresis shown in Fig. (5.4).

This type of hysteresis arise as a result of an ‘imperfect’ or‘perturbed’ pitchfork bifur-

cation (Hoyle, 2006). Previous investigations (Burnley and Culick, 1996; Subramanian

et al., 2013) show that the hysteresis region is created in the vicinity of a subcritical

Hopf bifurcation. However, we show that a perturbed pitchfork bifurcation can also

create a hysteresis region. In this section, we will show that this perturbation is due

to the quadratic nonlinear term (p̂22a) present in the nonlinear equations. Such type of

bifurcation was not discovered earlier in the study of combustion instability. Hysteresis

creates a bistable zone.

Figure 5.4: Bifurcation diagram, computed using AUTO, for acoustic pressure ampli-
tudep2a. Unstable solutions are indicated by dotted lines and stable solu-
tions are indicated by solid lines. A hysteresis zone exist between the fold
pointF andλ = λh. We have chosenα = -1, θ = 0.6,ϑ = -0.09 andu0 = 1
for the computation of this diagram.

A bifurcation creating a bistable zone has a bifurcation point λh which marks the

upper limit of the parameter space in which stable non-oscillatory and oscillatory so-

lutions coexist. Whenλ > λh zero amplitude or non-oscillatory solution is unstable.

Any small perturbation will attain a finite high amplitude branch. We have shown in

this thesis, the influence of weightsθ andϑ on the location ofλh (shown in Fig. (5.5)).
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These weights are functions ofρ0 and are related to each other. As the value ofϑ andθ

decreases,λh moves towards the pointλ = 0, thereby decreasing the hysteresis width.

Also, the amplitude of the non-zero branch reduces asϑ is reduced in magnitude. The

magnitude of burned gas density, therefore, has a significant effect on the hysteresis

width. Therefore, the magnitude of weights serves two purposes: the determination of

saturation amplitude and the value of bifurcation parameter at which transition occurs.

−1 0 1 2 3
0

1

2

3

λ

p
2a

λ
h3

b1

b2

b3

λ
h2

λ
h1

Figure 5.5: We show the influence of the magnitude ofθ andϑ on the location ofλh.
We use the valuesθ = 2 andϑ = -1 for the computation of b1,θ = 0.9 and
ϑ = -0.2025 for b2 andθ = 0.6 andϑ = -0.09 for curve b3.λh1, λh2 andλh3
are the bifurcation points for curves b1, b2 and b3 respectively. The curves
are obtained by numerical continuation, using AUTO.

The variation in the location ofλ, causing the change in the hysteresis width, may in-

terest the researchers in thermo-acoustics. One of the recent investigation by Gopalakr-

ishnan and Sujith (2014) experimentally investigated the cause of change in hysteresis

width. The influence of mass flow rate on the reduction of hysteresis width was investi-

gated by Matveev (2003). The weights are decided by factors such as Damkohler num-

berDa, which in turn is the ratio of flow time scale to the chemical time scale. There-

fore,Da depends on the mass flow rate. Further, a relation between chemical time scale

and acoustic time scale could be made based on the study by McIntosh (1991). Such

an investigation is within the scope of our theory. The secondary bifurcation shown in

Fig. (5.6) is another promising finding of our investigation. The secondary fold pointF1

creates a another oscillatory branch. The secondary bifurcation is exhibited for weights

2 times their values in the rest of the domain. There are two stable oscillatory branches

for the sameλ. This implies that the perturbations of magnitude greater than the thresh-

old curveU2 reaches the higher amplitude branchC2. Lower magnitude perturbations

(magnitude less thanU2) attains the lower amplitude branchC1. Therefore, secondary

bifurcation also create a bistable zone.
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Figure 5.6: Bifurcation diagram, computed using AUTO, showing supercrtitical bifur-
cation with dotted line showing unstable solutions and solid lines showing
stable solutions. A bistable zone is created because of the fold bifurcation
at F1. We have used the valuesα = -1, θ = 1, ϑ = -0.01 andu0 = 1. For
λ > λh, system is unstable.

This type of secondary bifurcation was studied by Ananthkrishnanet al. (1998) to

show the existence of multiple limit cycles in vibrating mechanical systems. Multi-

ple limit cycles are a consequence of secondary bifurcation. However, he used a Van

der Pol oscillator to explain the secondary bifurcation. Later such models were used

by Ananthkrishnanet al. (2005) to explain multiple limit cycles in a thermo-acoustic

systems. Juniper (2011) used a nonlinear heat release rate term (∝ (u0/3)
1/2) to show

multiple limit cycle in thermo-acoustic system. Our theoryalso shows that the existence

of secondary bifurcation is a result on nonlinear source term. A distinction between two

types of bifurcations that we observed is that one type of bifurcation exhibits hysteresis

in the vicinity of λh and another type does not exhibit hysteresis in the vicinityof λh.

We will now investigate the transition from one type to another type of bifurcation.

5.1.4 Supercritical bifurcation as a limiting case

Thermo-acoustic systems are known to exhibit both supercritical and subcritical bifur-

cations (Waugh, 2013). He described these bifurcations as aconsequence of the nonlin-

ear processes in the system. A dynamical system that undergoes subcritical bifurcation

exhibits hysteresis zone. In a supercritical bifurcation,hysteresis effect is absent. How-

ever, a mechanism that causes the transition from a bifurcation with hysteresis to a su-

percritical bifurcation is unknown. Our nonlinear theory formulated as nonlinear CRD

system also can exhibit the bifurcation with hysteresis andthe supercritical bifurcation.

We show a possible reason for the transition from one type to another type of bifurcation
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using CRD system. We use mean densityρ0 as a parameter for showing the transition.

Mean density changes as a response to the rise in temperatureduring combustion.ρ0

can also be related to the mass flow rate of air-fuel mixture supplied to the combustion

chamber. Mean density is also dependent on the preheat temperature. Fuel-air mix-

ture is preheated to thrice the ambient temperature in many combustion applications

(Menon, 2005a). Therefore, mean density is a parameter which represents the combus-

tion process. The change in mean density causes variation inθ andϑ. The manner in

which this variation occur is described by Eqs. (5.14-5.15). We can see from Fig. (5.8)

that the hysteresis width is reduced whileρ0 is reduced. The problem description is

the same as the one described for the computation of Fig. (5.4). There is a localized

heat release rate fluctuation. Therefore, the short length scale acoustic-hydrodynamic

interaction is investigated for explaining the phenomenonof variation in the hysteresis

width. The reduction in the hysteresis width is linear with respect to the variation in
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Figure 5.7: Transition from the bifurcation exhibiting hysteresis to a supercritical bi-
furcation asϑ, θ are reduced. The change inϑ andθ is in response to the
change inρ. The relations between the mean density and the weights are
described by Eqs. (5.14-5.15).
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Figure 5.8: Hysteresis width is reduced asρ→ 0. The reduction inρ reduces the weight
θ linearly and the weightϑ quadratically.

ρ0. However, asρ0 becomes close to zero, the hysteresis width approaches to zero only
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asymptotically. The lower values ofρ0 result in very low values ofϑ (O(10−3)) in the

CRD system. Thereafter, convergence in solution is difficult to achieve. Therefore, we

have computed hysteresis width only tillρ0 = 0.08. In the next section, we will show

that the change in the type of bifurcation from one that exhibit hysteresis to supercritical

is a result of quadratic nonlinearity.

5.1.4.1 Cause of change in the type of bifurcation

The quadratic nonlinearity (̂p22a) in the nonlinear evolution equations for acoustic pres-

sure amplitude has a significant effect on determining the type of bifurcation. In this

section, we will demonstrate this effect by arbitrarily choosing θ, the coefficient of

the quadratic nonlinear term, to be 0. In Fig. (5.9b), we showthat in the absence of

quadratic nonlinear term the bifurcation is supercritical. In Fig. (5.9a), we introduce the

quadratic term by imposing a non-zero value forθ and retrieve the hysteresis behavior.

Figure 5.9: a) Bifurcation diagram of̂p2a computed using AUTO with the coefficients
α=-1, θ=0 andϑ=-1, b) Bifurcation diagram of̂p2a with the coefficients
α=-1, θ=1 andϑ=-1.

The hysteresis behavior, in the bifurcation described above, arise from a ‘pertur-

bation’ of ‘imperfection’ in the normal form (Eq. (1.16)) ofsupercritical bifurcation

(Hoyle, 2006). The normal form has only a linear term and a cubic term. Therefore, the

quadratic term in the CRD system is a perturbation. Perturbed bifurcation problems are

discussed widely in the field of beam buckling (Jackson, 1992; Golubitsky and Scha-

effer, 1978). For example, in the context of Euler beam buckling problem, Golubitsky

and Schaeffer (1978) has explained the effect of a perturbation in the potential energy

in causing sudden buckling. They have shown the perturbations in both supercritical

and transcritical bifurcations, associated with the bucking of beams, when the critical
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compressive force is exceeded. Now we know the influence of quadratic nonlinearity

on the hysteresis exhibited by our CRD system. Next, we will discuss the trend in the

variation of hysteresis width.

5.1.4.2 Power law variation of hysteresis width

For the parameter range shown in Fig. (5.8), the variation ofthe hysteresis width in

response to the variation in the mean density obeys the powerlaw. The hysteresis width

varies asρ20. A log-log plot is shown in Fig. (5.10). Recently, the power law relation
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Figure 5.10: Log-log plot showing the variation in the hysteresis width in response to
the variation in density. A linear variation in the log-log plot is obtained
because the hysteresis width is proportional toρ20.

between the variation in the hysteresis width and the Strouhal number was shown in

experiments by Gopalakrishnan and Sujith (2014). They defined the Strouhal number

to be the ratio of the convective to acoustic time scales.ρ0 can have an influence on the

mass flow rate. Mass flow rate determines the convective speed. Also the Damkohler

number that appear in the weights is the ratio of the convective time scale to the chem-

ical time scale. Therefore, the weights are also functions of time scales. A conjecture

could be made relating the ratio of time scales to the hysteresis width. An investigation

in this direction comes under the scope of present work. We show in Fig. (5.7), the tran-

sition from a bifurcation resulting in finite width hysteresis region (shown by curveb3)

to a supercritical bifurcation (shown by curvebs). Such a transition is the consequence

of reduction in the magnitude of the coefficients of nonlinear terms due to the reduction

in the mean density. Now we need to know the influence of convection on the transition

to instability.
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5.1.5 Propagating flame inside a duct

Thermo-acoustic instability has also been investigated for an experimental configura-

tion where a premix flame propagates in a tube (Searby, 1992).In such cases, the

convective effects are negligible. Therefore, the convective term can be neglected. For

studying the influence of propagation of the premix flame on the acoustic field inside a

tube, we need to introduce a coordinate transformation. Theframe of reference is fitted

onto the flame front by introducing the transformationX = η − wτ ′ for the CRD sys-

tem.w is the speed of propagation of the flame front. Experiments bySearby (1992) and

Clanetet al.(1999) confirms ‘primary instability’ where the heat release rate fluctuation

due to the flame front fluctuation leads to the growth in the acoustic pressure amplitude.

The growth is exponential followed by a nonlinear saturation. To reproduce this trend,

we have applied the coordinate transformation to reduce theCRD system into a set

of ordinary differential equations; i.e.dp̂2a/dX = −1/w(f + (1/RePr)d2T̂2/dX
2)

anddT̂2/dX = −1/(ρ0w)(g+(γ/RePr)d2T̂2/dX
2), wheref represents the nonlinear

terms in Eq. (5.9) andg represents the nonlinear terms in Eq. (5.10). To represent the

heat release rate fluctuation, we impose values forα, θ andϑ (As we have discussed

before, these coefficients represent the intensity of heat release rate fluctuation). In

Fig. (5.11), we show the evolution of acoustic pressure amplitude with respect to the

spatio-temporal coordinateX. The exponential growth and the saturation of acoustic

pressure amplitude is evident from Fig. (5.11a). In Fig. (5.11b), we plot the evolution

with respect to variousλ. As the coefficientλ is increased, the growth rate increases

(growth rates for the curvesc2 > c3 > c1). However, we also see that the saturation

amplitude is not determined by the growth rate (amplitude for c3 > c2 > c1). Sat-

uration amplitude is determined by the coefficients of nonlinear terms. Therefore, we

know thatλ represents the linear growth rate.

5.1.6 Effect of convection term

In Section 5.1.3, we discussed the transition to instability when a localized perturbation

is present in the domain. The localized perturbation spreads over the entire domain

and induce global instability. However, the manner in whichthis spread occurs in not
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Figure 5.11: The exponential growth of the acoustic pressure amplitudep̂2a which is
followed by the nonlinear saturation. a) Regimes of the exponential growth
and the saturation. This curve is computed from the coordinate trans-
formed CRD system withλ = 0.0072, α = 0.71, θ = 1.42, ϑ = 0.5041
andw = 0.23 (also the curvec1 in b). The comparison of growth rates for
various values of coefficients is shown in b: curvec2 is obtained by using
λ = 0.0168, α = 0.84, θ = 1.68, ϑ = 0.7046 andw = 0.33 and curve
c3 is obtained by usingλ = 0.0157, α = 0.87, θ = 1.74, ϑ = 0.7569 and
w = 0.35.

yet clear. In a reaction-diffusion system the local spatialperturbation is communicated

to the neighboring spatial location through the diffusion process. Diffusion process

is slower than the convective process. In CRD system, we havea convective term in

addition to the diffusion term. Therefore, we investigate the influence of this convection

term in the spread of local perturbation.

We have provided a non-zero value foru0 in the computation of bifurcation dia-

grams 5.4 and 5.6. In Fig. (5.12), we show that without convection the localized per-

turbation will only grow temporally. Therefore, we supposethat the role of diffusion

in the spread of localized disturbances in a reaction-diffusion system is played by the

convection term in our CRD system. Each of the grid points represent a node which

interact with the neighboring nodes. The information or thedisturbances in each node

should be communicated with the neighboring nodes for the local perturbation to grow

spatially. However, in the absence of convection this communication is absent. In

Fig. (5.13), we impose an arbitrary value foru0 and show that the local disturbances

spread all over the solution domain. Therefore, we now know that the localized pertur-

bation spread spatially as a result of convection. In the next chapter, we emphasize the

effect of convection in the spatial growth of localized disturbances.
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Figure 5.12: The spatiotemporal evolution ofp̂2a without the influence of convection
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Figure 5.13: In the presence of convection the local perturbations grow both in space
and in time whenu0 = 0.1

5.2 Conclusion

In this chapter, we have developed a set of convection reaction diffusion (CRD) equa-

tions. The thermal-acoustic interaction that represents the pressure-temperature cou-

pling is explained using the new nonlinear CRD equations. Using the CRD system, the

mechanism of acoustic-hydrodynamic interaction that leads to thermo-acoustic instabil-

ity is examined. The convective term∇η.~u0 represents the influence of hydrodynamic

field. The nonlinear reaction term in the CRD equations represent the influence of heat

release rate fluctuations. The heat release rate fluctuationis shown to be a consequence

of chemical reaction-acoustic interaction. We prove that the chemical reaction-acoustic

interaction is responsible for the coupling of the acousticfield variables; i.e. the sec-

ond order thermal, second order density and the acoustic pressure fluctuations, with the

hydrodynamic field.

Solving for the CRD system, we observed two types of bifurcations: 1) a bifurcation

that introduces bistable zone consisting of oscillatory and non-oscillatory solutions and

2) a bifurcation that introduces bistable zone with two oscillatory solutions. The theory

is formulated through a rigorous mathematical derivation from the governing equations
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for compressible fluid flow. The control parameters that determines the bifurcation

characteristics are the parameters governing combustion process. These parameters can

be related to the ratio of time scales, the mass flow rate and the preheat temperature.

Therefore, the weights that determine the strength of nonlinearity have physical mean-

ing. This is an improvement over the present theoretical models.

In this chapter we have explained the origin of hysteresis using the physical param-

eters such as heat release rate, Damkohler number and mean density in the combustion

chamber. In the next chapter, we investigate the influence ofconvection on the spa-

tiotemporal growth of local pressure disturbances.
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CHAPTER 6

Influence of convection on the stability characteristics of

thermo-acoustic system

In the previous chapter, we saw that the representation of thermo-acoustic system as a

convection reaction diffusion system (CRD). We saw that thefluid flow velocity has a

significant role in transporting the local acoustic pressure disturbances, leading to the

spread of disturbances in space. As an outcome of our analysis of thermo-acoustic

system, we have shown the existence of a hysteresis zone accompanying the bifurca-

tions. In the control parameter space where hysteresis effects are found, oscillatory and

non-oscillatory solutions coexist. Such a phenomenon is called bistability. Bistability

is a significant stability characteristic of a thermo-acoustic system (Zinn and Lieuwen,

2006; Subramanianet al., 2013; Burnley and Culick, 1996).

As discussed in Chapter 1, the existence of a bistable zone isdue to the existence

of two types of physical mechanisms - a mechanism that damps the acoustic pressure

amplitude and another mechanism that acts to amplify the acoustic pressure amplitude.

These physical mechanisms arise from various acoustic sources in a reacting flow field.

We use the term ’sources’, as they resemble the aeroacousticsources found using the

source filtering approach of aeroacoustic perturbation equations (Ewert and Schröder,

2003). One such mechanism is due to the convection due to the fluid flow. Convection

of acoustic energy is one such factor that influences the stability of the system. In chap-

ter 4, from the demonstration of the transition to instability, we also find that the heat

release rate and DC shift also contribute to the growth of acoustic pressure amplitude.

The heat release rate fluctuation arising from the chemical -acoustic interaction, also

appear as a source on the right hand side of the convection reaction diffusion (CRD)

equations. Our discussion leads to the fact that the sourcesthat we deal with, in the

study of thermo-acoustic system, are convective - acoustictype. In this context, the

theoretical framework developed in Chapter 3 reinforces the findings of earlier investi-

gators (Chapter 1, Zinn and Lieuwen, 2006; Shanbhogueet al., 2009). The role of these



sources in the growth and saturation of acoustic pressure amplitude that determines the

bistability in a thermo-acoustic system will be discussed in the following section.

6.1 Stability as a consequence of linear vs nonlinear pro-

cesses

The growth of any infinitesimal disturbances are initially governed by the linear pro-

cesses (see Fig. (1.2)). The nonlinear saturation processes act when the disturbances

grow to a finite amplitude. Therefore, earlier studies emphasize the need for under-

standing the nonlinear stability characteristics in addition to the stability characteris-

tics revealed from the linear stability analysis (Zinn and Lieuwen, 2006; Noirayet al.,

2008). Noirayet al. (2008) emphasizes the role of nonlinear processes using a describ-

ing function approach. In their analysis, they observed that for some parameters, very

small amplitude disturbances grow linearly until the amplitude is reduced to zero by the

nonlinear processes. Also, initial negative growth rate was observed to become positive

for sufficiently high amplitude. Again, for higher amplitude, the growth rate is reduced

to zero. Therefore, we believe that the linear and nonlinearprocesses are related to the

driving and damping that causes bistability in a thermo-acoustic system.

6.1.1 Identification of linear and nonlinear processes

The theoretical studies on flame - acoustic coupling by Wu (2005) and Wuet al.(2003)

prove the existence of nonlinear sources. These nonlinear sources appear as coupling

functions that establish acoustic - hydrodynamic interaction. The origin of these non-

linear functions is due to the jump relations that connect acoustic velocity across the

compact flame. Wuet al. (2003) expressed these jump relations as

[ua] = q((1 + (∇F0)2)1/2 − 1) (6.1)
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to represent the acoustic velocity jump across the flame, and

[U0] = q((1 + (∇F0)
2)−1/2 − (1 + (∇F0)2)1/2) (6.2)

to represent the base flow modification across the flame. In Eqs. (6.1-6.2),F0 describe

the flame front. Therefore,∇F0 describes the curvature of the flame. Equation (6.1)

suggests that whenever there is a curvature in the flame, an acoustic field is generated.

The right hand side of Eqs. (6.1-6.2) represent the unsteadyheat release rate concen-

trated along the flame. Both coupling functions show the influence of heat release rateq

on the hydrodynamic velocityU0 and the acoustic velocityua. The jump relations, ac-

cording to Wuet al. (2003), causes a strong nonlinear interaction between the acoustic

field and the flame. From an experiment, which studies the interaction of vortices with

the heat release rate, Duroxet al.(2005) proves that the response of the heat release rate

to the incoming flow disturbances is nonlinear.

In addition to the nonlinear processes, there are linear processes that act in the initial

stages of the growth of pressure disturbances (Culick, 2006). These linear processes are

represented as the source terms that appear on the right handside of equations for the

linear harmonic oscillator. The assumption is that the magnitude of disturbances is

small in the initial stages of their evolution. These linearequations are obtained as the

first order equations after the application of perturbationmethod. We have obtained

such evolution equations (Eqs. 3.24 and 3.25) governing theevolution of acoustic field

variables. However, in our equations the source terms are absent at first order. At higher

orders we can obtain amplitude evolution equations. In those equations, the linear and

the nonlinear growth rates are expressed as the coefficientsof linear and nonlinear terms

respectively. Wuet al. (2003), investigating the interaction of Darrieus-Landau(D-L)

instability with the sound field, expressed the influence of linear and nonlinear processes

on the growth of amplitudeA of the D-L mode as

A′ = κA+ γsA
3 − γb|B|2A (6.3)

B′ = χsA
2B +mpB (6.4)
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whereB is the amplitude of the acoustic pressure and velocity fields. The coefficientsκ,

γs, γb, χs andmp depends on the physical system under consideration. They represent

the growth rates of D-L instability mode and acoustic field variables. The interaction

between the D-L instability mode and the acoustic mode is nonlinear even when their

respective magnitudes are small. Such a nonlinear interaction is called weakly non-

linear interaction. Similar splitting of linear and nonlinear processes is achieved by

Subramanianet al.(2013). The governing equations that describe the contribution from

linear and nonlinear processes are also known as slow flow equations (Subramanian

et al., 2013). The slow flow equations are obtained as higher order equations after the

application of perturbation methods (Culick, 2006; Wuet al., 2003; Subramanianet al.,

2013). CRD equations are higher order equations (O(ǫ2)). Also the CRD equations

show the evolution on the slow time scale or the acoustic timescale. Next, we will

discuss the linear and nonlinear mechanisms in the context of our CRD system.

6.1.2 The linear and nonlinear processes as represented by the con-

vection reaction diffusion equation

The convection reaction diffusion equations, derived in Chapter 3, show a new nonlin-

ear mechanism. This nonlinear mechanism, which arises fromthe chemical - acoustic

interaction, is also a function of heat release rate (see theexpressions for coefficients in

Eqs. (5.9, 5.10)). The chemical - acoustic interaction is aninherent mechanism present

in low Mach number reacting flows (Oran and Gardner, 1985). Together with the in-

fluence of fluid flow disturbances, and the proposed nonlinearmechanism, a better de-

scription of driving and damping forces in a thermo-acoustic system is provided in this

chapter. In Chapter 1, we have seen that the driving mechanism is generally subjected

to the nonlinear effects. The models describing the drivingmechanisms tend to adhere

to this general rule. In Fig. (1.2) we can see that the drivingundergoes nonlinear evolu-

tion, whereas the damping undergoes linear evolution. Fromthe discussion of coupled

nonlinear CRD equations, we now know that the nonlinear influence appears naturally

in reacting flows. Therefore, CRD equations seem to present abetter picture of nonlin-

ear stability characteristics of a thermo-acoustic system. Nonlinear terms also prove the

amplitude dependency of the driving mechanism (see Fig. (1.2)).
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6.2 Nonlinear instabilities

The influence of nonlinear sources on the stability of fluid dynamic system has been

well explored (Chomaz, 1992). Chomaz used a Ginzburg - Landau equation (GLE)

to model the nonlinear processes in a fluid dynamic system. Earlier, GLE was used

to study the stability features of Navier - Stokes equations(Godrèche and Manneville,

2005). The real GLE equation is written as:

∂A

∂t
+ U0

∂A

∂x
= R(A) +

∂2A

∂x2
(6.5)

where,R(A) = −∂V (A)/∂A andV (A) = −µA2/2− A4/4 + A5/5. The presence of

convective term, the linear and nonlinear terms in GLE resemble that of CRD equations.

These terms give rise to two nonlinear instabilities - nonlinear convective instability and

nonlinear absolute instability.

6.2.1 Nonlinear convective instability

As the name suggests, the convective instability arises from the interaction between

convection term and the local instability mechanism. A disturbance on the parallel base

flow can be expressed asAφ(y, k, ω)exp[i(kx−ωt)], wherek, ω andA are the complex

wave number, the frequency and the amplitude respectively.For a control parameter

R, the instability occurs when the growth rateωimax(R) > 0. If a disturbance, local

in nature, dies down, then we call the system to be linearly stable. However, if the

convection aids in the transportation of the local disturbance to other parts of system,

then the system is convectively unstable. The disturbance dies down at a fixed location

and grows in a moving frame of reference (see Fig. (6.1)). Thestability thus defined is

applicable only to linear regime of disturbances. When the sources are nonlinear, the

definition is extended to include the disturbance of finite amplitude. Under the action

of a constant forcing, for a nonlinearly convective stable system, a disturbance of finite

amplitude decays in the laboratory frame of reference (Huerre and Monkewitz, 1990;

Chomaz, 2005).
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t

Figure 6.1: The illustration of nonlinear convective instability. The local disturbance at
a fixed location decays at that point as time advances. The disturbance is
also communicated to other locations.

6.2.2 Nonlinear absolute instability

For an absolute instability, the amplitudeA of an infinitesimal disturbance grows to

infinity at any fixed point in the laboratory frame of reference. Nonlinear absolute in-

stability is defined for a disturbance of finite extent and amplitude. The amplitude of

disturbance grows and achieves a saturation amplitude at any fixed point in the labora-

tory frame (see Fig. (6.2)) (Huerre and Monkewitz, 1990; Chomaz, 2005).

t

x

Figure 6.2: The illustration of nonlinear absolute instbility. The local disturbances grow
at any location in the laboratory reference frame

Thermo-acoustic system involves acoustic - flame - hydrodynamic interaction. The

stability is then defined in terms of the growth or decay of acoustic disturbance ampli-

tude due to the sources from the underlying hydrodynamic field (the unsteady reacting
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flow). Therefore in this chapter, we chose to study the stability of flow - acoustic -

heat release rate system. To describe the thermo-acoustic system, We have obtained

coupled nonlinear CRD equations, obtained from Navier - Stokes equations through

rigorous derivation. Therefore unlike GLE equations, the coupled equations are not

simple model equations for fluid flow instabilities. The typeof nonlinearities inherent

to the flow - acoustic - heat release rate will be investigated. Nonlinear instabilities,

of absolute and convective nature, will be discussed in the context of thermo-acoustic

system using CRD equations.

Finally, with the investigation of the nonlinear instabilities we show that the bista-

bility is a consequence of two mechanisms: 1) the transfer ofenergy with the flow field

when the control parameter exceeds a critical value and 2) the saturation mechanism

introduced by the chemical-acoustic interaction. The transfer of energy with the flow

field is again two fold. In the region of NLC, the flow carries away the acoustic dis-

turbances from the system. In the NLA regime, the flow aids in the growth of acoustic

disturbances to a finite amplitude so that nonlinear mechanisms causes the saturation

to self sustained oscillations. In this manner, convectionof acoustic disturbances due

to flow acts to damp and drive the disturbances depending on the region in the control

parameter space.

6.3 Nonlinear instability

6.3.1 Problem description

In a thermo-acoustic system, a localized heat source such asflame can generate a pres-

sure wave. According to Dunlap (1950), the pressure wave leads to thermal fluctuations

and eventually causes heat release rate modulation. The heat release rate modulation,

in turn, modifies the flow field or introduces local flow disturbances through gas ex-

pansion. A theoretical description of these phenomena is provided by the system of

Eqs. (3.12, 5.9, 5.10). Equation (5.9) represents the influence of flow field dynamics

and heat release rate fluctuations on the generation of acoustic pressure wave. Equa-

tion (5.10) represents the coupling of acoustic pressure wave with thermal fluctuations.
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Equation (3.12) represents the influence of heat release rate on the flow field.

From the earlier research conducted to understand the interaction between heat re-

lease rate and acoustic field, two major coupling mechanismsare revealed. They are

pressure coupling and velocity coupling (Clavinet al., 1990, 1994; Pelce and Rochw-

erger, 1992). In the present study, the nonlinear processeswhich couple the flow field

and acoustic field are found to be due to pressure coupling (a mechanism through which

the acoustic pressure and heat release rate fluctuations influence each other). Therefore,

our objective is to study the response of the nonlinear thermo-acoustic system described

by Eqs. (5.9, 5.10) to an initial infinitesimal acoustic pressure perturbation.

Here, we consider the geometry of thermo-acoustic system tobe a duct with no

area variation. The duct is filled with fuel-air mixture withpremixed flame, a source

of heat release rate, is situated at a fixed location. Across the flame, the acoustic pres-

sure does not vary (Clavinet al., 1990, 1994; Pelce and Rochwerger, 1992). This is

true for any localized heat release rate fluctuations. To describe acoustic pressure in

such a situation, an additional length scale can be introduced as a function ofη; i.e.

δη. Hereδ is the ratio of length scale which describes the localized heat release rate

fluctuation to the length scale for acoustic pressure variation. δη is the length scale

describing the spatial variation of acoustic pressure. Using this length scale, which is

longer compared toη, we could describe the acoustic pressure wave to be of the form

p̂2a(η, τ
′)ei(kδη+ωτ). The spatio-temporal solution formei(kδη+ωτ) is thus separated from

the perturbation amplitude which is localized in the long length scale (ξ). This scale

separation is schematically represented in Fig. (5.2). Initial perturbations can then be

applied locally top̂2a(η, τ ′). Coefficients of Eq. (5.9) represent the physical parameters

of system such as reaction rates, heat release rate and diffusion coefficients, for which

values are specified explicitly.

We solve the nonlinear equations numerically in one dimension for the acoustic

pressure and thermal fluctuations. A CVODE solver (Cohenet al., 1996), provided

with XPPAUT (Ermentrout, 2002), is used for the integrationof stiff equations. The

initial velocity field for all the cases discussed below isu0 = 0. As a consequence, any

flow disturbance is generated due to the acoustic field alone.The zero gradient bound-

ary condition is chosen for the present computations. A numerical experiment, which
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we have set up now, will permit us to investigate the mechanism of growth and decay

of the initial acoustic disturbance and its interaction with the flow field and the heat re-

lease rate. The growth of the acoustic pressure perturbation and its saturation to a finite

Figure 6.3: Spatio-temporal evolutions computed from Eqs.(5.9, 5.10). These are the
solutions obtained by solving nonlinear equations. Initial perturbation to
p̂2a is of the order10−3, a) p̂2a = 0 is stable (S), b)̂p2a = 0 is unstable (U),
c) Nonlinear convective instability (NLC), d) Nonlinear absolute instability
(NLA). ti denotes the time of initial perturbation andtf is the time when
the final state is reached.

amplitude is a characteristic of thermo-acoustic instability. The decay of any infinites-

imal perturbation at any specific point in space indicates its stability (S); the growth

indicates an unstable system (U). However, apart from theseconditions, we show that

thermo-acoustic system also exhibits nonlinear convective (NLC) and absolute insta-

bility (NLA). The control parameter space for these instabilities, which are governed

by the nonlinearities in the system, is explored. The types of instabilities exhibited by

the system described by Eqs. (5.9, 5.10) are illustrated in Fig. (6.3). The growth of

perturbations in S and U regimes do not depend on the magnitude of perturbation. Per-

turbations of any magnitude will decay in the S regime and grow in U regime. However,

as you can see in Fig. (6.4), the magnitudes of perturbation matter in the NLA and NLC

regime which indicates the amplitude dependency in the caseof nonlinear instabilities.

In the subsequent sections, we will explain the significanceof NLC and NLA and

the role of convection in determining the stability of a thermo-acoustic system. Insta-
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bility is indicated by a nonzero final amplitude to which the initial acoustic disturbance

evolves. To investigate the parameter space of instability, we have computed the bifur-

cation diagrams (see Fig. (6.4)), from the nonlinear equations, using various values of

the physical parametersα, θ, ϑ andD. The bifurcation diagrams are computed using

AUTO (Doedelet al., 1997). We have computed the bifurcation diagram for values

of D = 0.1, 0.01, 0.001 and forα = −0.6,−0.8,−1. These diagrams show the same

qualitative behavior with respect to the types of nonlinearinstabilities. Therefore, in

Fig. (6.4) we show a demonstrative case for the types of nonlinear instabilities observed

in our thermo-acoustic system. We show the influence of the linear coefficientλ (a func-

tion of heat release rate and the mean pressure shift) on the stability of the system. The

saturation to the finite amplitude is a consequence of the nonlinear terms; coefficients

of which corresponds to the heat release rate fluctuations due to acoustic field.

In a thermo-acoustic system, we observe fluid flow fluctuations that accompany

the acoustic oscillations. We believe that the coupling between these two processes is

significant in determining the stability characteristics of a thermo-acoustic system. In

the following discussion, we attempt to establish this conjecture.

In Fig. (6.4), the significance of two nonlinear instabilities - nonlinearly convective

and nonlinearly absolute - is discussed. The parameter space, where there is a possibil-

ity of nonlinear instabilities to occur, has two stable branches. One is a zero amplitude

branch and other a finite amplitude branch. The pointsp1, p2, p3 andp4 indicate the

amplitudes of perturbations introduced in the nonlinear instability regimes. These per-

turbations are introduced uniformly over all grid points (j = 1 toN). For perturbations

p2 andp3, the thermo-acoustic system approaches the zero amplitudestate. For the final

state to be the zero amplitude state, values of the initial conditionsp2 andp3 for the time

marching are in the rangeO(10−3) − O(10−1). For perturbations ofO(1) (p1 andp4)

the system attains the finite amplitude state. The rest of this chapter studies the spatio -

temporal growth of localized acoustic pressure perturbations due to fluid flow.
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Figure 6.4: Bifurcation diagram (solid circles computed using the method of continua-
tion) with respect to the linear coefficientλ (control parameter). The other
system parameters are chosen asα = −1, θ = 2, ϑ = −1, D = 0.01.
The parameter space0 < λ < µ1 shows NLC (convective because the per-
turbation to the acoustic field in the system eventually leaves the domain,
nonlinear because the growth is governed by the nonlinear sources. The
initial small perturbation of the orderO(10−3) reaches a finite amplitude
before leaving the domain) andµ1 < λ < µ2 shows NLA (absolute because
the perturbation to the acoustic field grows in space and timeand never de-
cays). λ > µ2 is a region where the system is absolutely unstable. Here,
µ1 = 0.179 andµ2 = 0.231. The filled circles show the stable states for
thermo-acoustic system described by Eqs. (5.9, 5.10). Forλ < 0, stable
state isp̂2a = 0. The stable states forλ > 0 are the finite amplitudes ob-
tained due to the nonlinear terms. The time evolutions of perturbation in
the parameter space of NLC and NLA are shown in Fig. (6.5) and Fig. (6.6)
respectively. The region0 < λ < µ2 is also a bistable region, where zero
amplitude state and a finite amplitude state coexist. Pointp2 indicates per-
turbations ofO(10−1). As seen in this figure,p2 in the NLC regime rep-
resents a larger perturbation thanp3. Pointp3 corresponds toO(10−3) in
the NLA regime. Perturbationp1 is larger than the perturbationp4. The
unstable branch that separatesp2 andp3 from p1 andp4 is not computed
from continuation, but drawn to represent the relative magnitudes of pertur-
bations that will result in zero amplitude and finite amplitude branch.

6.3.2 Nonlinear convective instability

For the nonlinearity in Eqs. (5.9, 5.10) to play a significantrole in the growth or decay

of acoustic pressure amplitude, the initial infinitesimal disturbance should approach a

finite amplitude. In this section, we show the influence of thefluid flow velocity in this

process. From Eq. (3.12), we can express the dilatation as:

∇η · ~u0 =
γ − 1

γp0
HDa(Q̇+ Q̇′) +

γ − 1

γp0RePr
∇2

ηT0 −
1

γp0
∂τ ′p0 (6.6)

The acoustic field and the flow field interact with each other forming a feedback loop.

The solution of (6.6) along with the nonlinear Eqs. (5.9, 5.10) will provide us the evo-
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Figure 6.5: The initial perturbation to the acoustic field isshown in Fig. (6.5a).
Fig. (6.5b) shows the space - time evolution forp̂2a. The parameters corre-
spond to the region of NLC in the bifurcation diagram shown inFig. (6.4).

lution of the flow velocity and the acoustic pressure and temperature fields. A grid

convergence study is conducted withN (number of grid points inx direction) = 28, 56,

112, 224. Converged solution is obtained forN = 56 and above. Therefore we chose

N = 56 for the present study. In the region0 < λ < µ1, any infinitesimal perturbation

is amplified spatially as it is convected out of the domain. This process is illustrated in

Fig. (6.3c). The time evolution of̂p2a at a point in the boundary (where the maximum

amplitude is attained) is shown in Fig. (6.5b). Note that theinfinitesimal perturbation

can be spatially amplified and reach a finite amplitude beforebefore it is convected out

of the domain. However, at the point where the perturbation is introduced, it decays to

zero amplitude. Note that the time and space evolutions shown in this chapter are of

the acoustic pressure disturbance amplitude. This quantity p2a together with the spatial

distributionei(kδη+ωτ) represents the acoustic wave setup inside the duct.

6.3.3 Nonlinear absolute instability

In the regionµ1 < λ < µ2 in Fig. (6.4), the zero amplitude statêp2a is a metastable

state. The perturbations are not convected out of the domain. The fluid flow distur-

bances tend to amplify the infinitesimal perturbations to a finite amplitude. Then, the

nonlinear processes act on the growth of perturbations resulting in the saturation to a

non-zero amplitude. In Fig. (6.6b), there is a rise in the acoustic pressure amplitude

whenever there is a flow fluctuation. However, without the aidof flow disturbances (to
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Figure 6.6: The time evolution of the acoustic pressure amplitude in the NLA region
(µ1 < λ < µ2) of Fig.(6.4). (a) Shows the decay tôp2a = 0 in the absence
of flow disturbances (imposingu0 = 0) and (b) shows the saturation to a
finite amplitude state in the presence of flow disturbances (letting the flow
to evolve according to Eq. (6.6)). Even after the flow disturbances decay,
p̂2a remains in the finite amplitude state because of the absolutenature of
instability.

Figure 6.7: The spatial - temporal evolution of the amplitude of acoustic disturbances
(p2a) in the a) NLC regime and the b) NLA regime.

demonstrate this we have imposedu0 = 0 in Fig. (6.6a)), the acoustic pressure ampli-

tude cannot reach the magnitude ofO(1). As a consequence, the perturbation amplitude

decays to the metastable zero amplitude state. An illustration of this type of instabil-

ity in space and time is shown in Fig. (6.3d). The initial perturbation grows in space

and time, till it contaminates the entire domain (see Fig. (6.7b)). Forλ > µ2, any in-

finitesimal perturbation will saturate to a finite amplitude, sincep2a = 0 is an unstable

state. The system is absolutely unstable in this parameter space. The growth of acoustic

pressure perturbation in this region is shown in Fig. (6.3b).
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6.4 Concluding remarks

As a consequence of the nonlinear saturation mechanism, in the NLA and NLC region,

states of zero amplitude and finite amplitude coexist. The coexistence of these states

in NLA regime is entirely due to the interaction with the fluidflow. While operating

in NLC region, any localized small but finite (O(10−3)-O(10−1)) perturbation decays

to zero amplitude at that location. Any perturbations of finite amplitude of the order

O(1), applied uniformly in space, reaches the finite amplitude state. When parameter

region isµ1 < λ < µ2 (NLA), without convection only a perturbation ofO(1), applied

uniformly in space, results in the finite amplitude branch. However, with convection, the

flow amplifies the localized small but finite (O(10−3)) acoustic disturbances to the finite

amplitude state. This positive interaction indicates the driving effect of convection.

This type of positive interaction is reported here for the first time. Without this driving

effect, NLA region is characterized by the decay of infinitesimal disturbances to zero

amplitude state. The finite amplitude branch in the bifurcation diagram (6.4) is a state

where the localized disturbance has contaminated the entire space. While in this state of

finite amplitude, with changing the control parameter belowµ2, the acoustic pressure

amplitude do not approach the statep̂2a = 0. The zero amplitude state can only be

attained whenλ < 0, indicating the hysteresis effect widely studied in thermo-acoustic

interaction.
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CHAPTER 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have formulated a theoretical framework to study the growth of acous-

tic amplitude during the acoustic-hydrodynamic interaction. In our derivation, we have

revealed a mechanism responsible for the mutual transportation of acoustic and hydro-

dynamic fields. This mechanism couples the acoustic and hydrodynamic fields. There-

fore, any disturbance in the acoustic field is convected by the hydrodynamic velocity

field and any disturbance in the hydrodynamic field is convected by the acoustic veloc-

ity field. This mechanism was previously known as convectiveand lift-up mechanism

in the study fluid flow instabilities (Marquetet al., 2009). In the nearly incompressible

hydrodynamic phenomena, observed in magnetohydrodynamicflows, the mechanism

of mutual interaction of the fluctuating and the mean fields isalso known as Reynolds

stress forces (Dastgeer and Zank, 2004). Our convective andlift-up mechanism, that

establishes the acoustic-hydrodynamic interaction, is similar to the wave-mean flow in-

teraction phenomena found in MHD or atmospheric flows. In combustion environment,

the mutual interaction of acoustic, heat release rate and hydrodynamic fields give rise to

the modification of acoustic field. Therefore, the governingequations derived in Chap-

ter 3, using method of multiple scales (MMS), allow us to perform computations on the

combustion generated sound.

We show that the governing equations governing the evolution of acoustic field am-

plitudes are nonlinear perturbation equations. A positivefeedback loop between the

acoustic pressure field and the heat release rate may lead to the growth of acoustic pres-

sure amplitude in a thermo-acoustic system. The interaction mechanism of acoustic

pressure and heat release rate fluctuations, that can establish a feedback loop, is evident

from the nonlinear equations. These nonlinear equations are called convection reaction

diffusion (CRD) system. A subsystem of CRD system; i.e. reaction diffusion system,



has been proposed for various phenomena to represent their dynamical nature (Hoyle,

2006). Therefore, proposing thermo-acoustic system as a CRD system is a major ad-

vancement of this thesis.

The new theory, formulated as CRD system, provides a mathematical description

of combustion instability. Sources responsible for the generation of sound, in a com-

bustion environment, is extracted from the governing equations using a source filtering

approach (Ewert and Schröder, 2003). For a low Mach number flow, the convective,

vortical, entropy and acoustic sources exist on different time scales. In this context,

MMS is advantageous in decomposing the field variables according to the time and

space scales. We have described, using the method of multiple scales (MMS), the fast

oscillations on the acoustic time scale and the slow time scale evolution of acoustic pres-

sure amplitude on the convective time scale. We have shown that such a description is

advantageous for two reasons: 1) we obtain the time scales and space scales of various

sources that drive combustion instability and 2) a source filtering approach provides the

knowledge of time scales on which acoustic-vortical-entropy modes evolve. The sep-

aration of time scales separates the fast acoustic oscillations and the slow modulation

of acoustic amplitude. As a consequence, the computation using our nonlinear equa-

tions yields a stationary bifurcation. This is in contrast with the previous investigations

where Hopf bifurcations are computed (Burnley and Culick, 1996; Culick, 2006; Sub-

ramanianet al., 2013). The computation of a stationary bifurcation saves computational

resources. On the investigation of low Mach number reactingflows using the evolution

equations, we found a nonlinear mechanism that establishesacoustic-hydrodynamic in-

teraction. Mathematically, the interaction is formulatedas a class of convection reaction

diffusion (CRD) equations. Using the CRD system, we study the stability characteris-

tics of acoustic pressure perturbations introduced in the flow field.

From our investigation, in addition to the time scale separation, we have achieved

the space scale separation. We achieved this separation by deriving two sets of evo-

lution equations - one set governing the long length scale modulation and another set

governing the small length scale modulation. We believe that such an approach is ad-

vantageous, since the hydrodynamic fluctuations that drives the acoustic perturbations

are on the small length scale. Furthermore, the nonlinear growth of acoustic pressure
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perturbations is captured by following our approach.

We have used the dynamical systems analogy in understandingthe transitions ob-

served in thermo-acoustic system. Methods of the theoretical investigation of the stabil-

ity of thermo-acoustic system has advanced with the application of dynamical systems

theory. Previous investigations in this direction proposed that the change in the stability

of a thermo-acoustic system can either occur through a supercritical Hopf bifurcation or

through a subcritical Hopf bifurcation. The origin of limitcycle oscillations associated

with the instability is one of the reason for such a classification. These investigations

focused on reducing the governing equations for thermo-acoustic interaction to the nor-

mal form of supercritical or subcritical Hopf bifurcations. Transition from oscillatory

to non-oscillatory states in a thermo-acoustic system exhibits hysteresis effect. The

cause of this hysteresis is the motivation behind the study of change in the stability as

a subcritical bifurcation. However, in this thesis, we showthat the transitions can occur

through a perturbed bifurcation which also exhibit hysteresis effect.

The perturbed bifurcation can be created by introducing an additional term to the

normal form of pitchfork bifurcation. This additional termintroduces an asymmetry in

the pitchfork bifurcation. For example, following Hoyle (2006), this additional term is

a quadratic term in the equation given below.

x′ = µx+ ǫνx2 − ax3 (7.1)

The normal form has both the linear and nonlinear terms; i.e.µx+ ax3. The additional

term isǫνx2. As a result of this quadratic term, in addition to the stationary solution at

x = 0, we also obtain stationary solutions at

x1,2 =
1

2a
(ǫν ±

√
ǫ2ν2 + 4aν) (7.2)

which implies that there are two stationary solutions forµ > µc ≡ −ǫ2ν2/4a. The

bifurcation diagram computed from Eq. (7.1) is shown in Fig.(7.1). We can see that

there are three solutions whenµ > µc. Two of them are described by the stable branches

(solid lines) and one of them is described by the unstable branch (dotted line). There

is a hysteresis region in the parameter spaceµc < µ < 0. As the acoustic perturbation
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amplitudeA is positive, we need to consider only the positive branch; i.e. the solution

branches above the zero amplitude branch.
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Figure 7.1: Perturbed pitchfork bifurcation that result from including a quadratic non-
linear term in the normal form of supercritical pitchfork bifurcation. Solid
lines indicate the stable branch and dotted line indicate the unstable branch.
x1 andx2 are the solutions given in Eq. (7.2). For an acoustic perturbation
amplitudeA, x1 andx2 are the possible branches that are possible solutions.
The negative branch is a solution to example Eq. (7.1) forµ < 0. However,
this negative branch cannot be attained by any perturbationto the acoustic
pressure amplitude.

The bifurcation shown in Fig. (5.4) exhibits the hysteresiszone near the critical pa-

rameterλh. There is one more type of bifurcation that is supercriticalnear the critical

parameter. This type of bifurcation, shown in Fig. (5.6), iscalled a secondary bifur-

cation. Such a bifurcation creates multiple oscillatory branches. In a thermo-acoustic

system, these oscillatory branches correspond to multiplelimit cycles. The theory is

formulated through a rigorous mathematical derivation from the governing equations

for compressible fluid flow. Therefore, the control parameters that determines the bifur-

cation characteristics have physical meaning. This is an improvement over the present

theoretical models. In this thesis, we have explained the origin of hysteresis using the

physical parameters such as the heat release rate, the Damkohler number and the mean

density in the combustion chamber. The influence of convection is to spread the local

pressure disturbances spatially, which will lead to a spatiotemporal growth of initial

disturbances.

The mechanism responsible for the transition from non-oscillatory to oscillatory

state of acoustic pressure is found to be acoustic-hydrodynamic coupling. The transition

can occur in the region of parameter space where system the thermo-acoustic system is

not absolutely unstable. Using an example, which provides amathematical description
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of acoustic-hydrodynamic interaction, the influence of convection on introducing the

transition is elucidated. Finally, we propose that in addition to stable and unstable

regimes, the control parameter space also has a region wherepressure perturbations

show nonlinear convective instability (NLC) and a region where perturbations show

nonlinear absolute instability (NLA). Therefore, we propose that convective effects can

be a candidate mechanism for the instability in an otherwisestable operating zone.

7.2 Scope of future work

7.2.1 Application to real combustor configuration

The theory formulated in this thesis can be used to explain the origin of combustion in-

stability in practical combustor configurations. Real combustors exhibit fluid dynamic

instabilities. These instabilities can cause heat releaserate fluctuations. For example,

a combustor configuration with oxidizer inflow at the center and fuel co-flow as shown

in Fig. (7.2) can exhibit unsteady base flow field. The unsteady flow field can cause

flame instability which in turn cause heat release rate fluctuation. Using an in-house

computational fluid dynamics code, we have shown one of such thermo-acoustic insta-

bility. In Fig. (7.2), flame surface undergoes flapping in response to the generation and

propagation of vortices in the flow field. The vorticity dynamics can cause fluctuations

in the base flow velocity. The flapping of flame near to the blowout is known exper-

imentally (Nair, 2006). The generation and propagation of vortices and the resulting

non-uniformity in the burning of gases is investigated by Poinsotet al. (1987). There-

fore, the combustor configuration that we are going to discuss has practical relevance.

The combustor has an inflow of oxidizer with velocityU . The co-flow of fuel is at a

velocity u which is only 10 percentage of the center flow velocityU . The governing

Eqs. (3.10-3.12) for the low Mach number flow are solved to obtain the base flow veloc-

ity field. In the numerical study of flow dynamics as the one shown in Fig. (7.2), vortical

modes and entropy modes (from the propagation of burned gases in the vortices) inter-

act. Such an interaction will lead to the fluctuations in temperature and vorticity fields

(shown in Fig. (7.4)). In such a numerical study, there are more control parameters
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Figure 7.2: The streamlines of the flow for a) generation of vortices in the bottom mix-
ing layer b)the propagation of vortices out of the domain c) generation of
vortices in the top mixing layer. The thick solid line indicate the flapping
flame surface. This figure is plotted from the data computed using an in-
house low Mach number computational fluid dynamics code developed by
the author of this thesis. The ratio of fuel to oxidizer velocities, Reynolds
numberRe and the inlet temperatureT0 are chosen to beu/U = 0.1, 2000
and 900K respectively.

than those considered in this thesis. These parameters include the inlet species mass

fractions and the length and diameter of the combustor. In Fig. (7.3), we see that there

is a fluctuation inu0 in response to the flapping of the flame. Fluctuations in the base

flow is therefore unavoidable when there is thermo-acousticinstability. Solving nonlin-

ear equations 5.9 and 5.10 simultaneously with Eqs. (3.10-3.12) for low Mach number

flow will help us to study the evolution of acoustic pressure amplitude in response to

the unsteady flow field. However, the boundary conditions forsuch a two dimensional

simulation have to be carefully formulated. Further, such anumerical simulation will

be computationally expensive in terms of time and computational power.

7.2.2 Other nonlinear dynamical phenomena

Constructing a computational solver that solves the nonlinear equations coupled with

the low Mach number equations will reveal many other nonlinear phenomena. These

phenomena may include chaotic oscillations and intermittent oscillations. The theo-
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Figure 7.3: The time trace of base flow velocity fluctuations measured near the flame
sheet. This measurement correspond to the fluctuation in thebase flow ve-
locity that arise from the propagation of vortices that are shown in Fig. (7.2)

Figure 7.4: The time trace of vorticity and temperature fluctuations. Points A, B and C
corresponds to the flow field configuration a, b and c shown in Fig. (7.2).
This time trace is computed for the same parameters used for the computa-
tion of Fig. (7.2); i.e.the ratio of fuel to oxidizer velocities, Reynolds num-
berRe and the inlet temperatureT0 are chosen to beu/U = 0.1, 2000 and
900K respectively.)

retical analysis presented in this thesis is the first attempt to categorize the problem of

combustion instability into a mathematical class of equations. The reaction diffusion

system is known to exhibit limit cycle oscillations, chaotic oscillations and intermittent

oscillations of physical quantities in many fields ranging from chemical oscillators to

neural oscillators. Acoustic pressure oscillations driven by unsteady flow phenomena

can also exhibit such phenomena. Therefore, the present theory can be extended fur-

ther to study such phenomena. Using this theory, the fluid dynamic, acoustic and flame

instabilities can be investigated for its origin from acoustic-flame-vortex interactions.
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